Data Mesh – Gouvernance Fédérée et Architectures Distribuées

Le Data Mesh est une approche innovante qui répond aux limitations des architectures de données traditionnelles, notamment en matière de scalabilité et d’adaptabilité. Contrairement aux modèles centralisés, le Data Mesh propose une décentralisation de la gestion des données tout en renforçant la gouvernance globale.

Les fondamentaux du Data Mesh

Le Data Mesh repose sur des principes fondamentaux qui redéfinissent la gestion des données au sein des organisations.

Approche Domain-Driven Design (DDD) : Les données sont structurées et administrées par des équipes métiers responsables de leurs domaines spécifiques, alignant ainsi la gestion des données sur les besoins opérationnels.

Gouvernance Fédérée : Plutôt que d’adopter un contrôle centralisé, le Data Mesh met en place des politiques et des standards globaux appliqués de manière cohérente par les équipes locales, assurant une gouvernance équilibrée entre standardisation et autonomie.

Données en tant que Produit (Data as a Product) : Chaque domaine considère ses données comme un produit, intégrant des API claires, une documentation standardisée et des accords de niveau de service (SLA) pour leur consommation.

Les caractéristiques essentielles d’un Data as a product incluent :

  • Découvrabilité : Les données doivent être facilement identifiables et accessibles par les utilisateurs potentiels.
  • Adressabilité : Chaque produit de données doit disposer d’une adresse unique permettant un accès direct.
  • Fiabilité : Les données doivent être précises, cohérentes et disponibles conformément aux SLA définis.
  • Auto-descriptif : Les métadonnées doivent fournir une compréhension claire du contenu et du contexte des données.
  • Interopérabilité : Les données doivent être compatibles avec d’autres produits de données, facilitant ainsi leur intégration.
  • Sécurité : Les données doivent être protégées contre les accès non autorisés et respecter les normes de conformité.

Ces principes assurent une gestion décentralisée des données, tout en maintenant une cohérence et une qualité optimales à l’échelle du SI de l’entreprise.

Différences clés avec les approches modulaires

Bien que les architectures modulaires et les microservices soient mentionnés dans le guide de Smartpoint sur les architectures data modernes, le Data Mesh se distingue par une orientation centrée sur les utilisateurs métiers. Contrairement aux microservices qui se concentrent sur les aspects technologiques, le Data Mesh permet aux utilisateurs métiers d’accéder directement aux données, en fournissant des outils adaptés pour démocratiser leur exploitation. De plus, alors que les architectures modulaires adressent principalement la scalabilité technique, le Data Mesh répond également aux enjeux humains et organisationnels, offrant ainsi une approche plus holistique de la gestion des données.

Enjeux et avantages du Data Mesh

L’adoption du Data Mesh offre plusieurs avantages pour les architectures de données et les systèmes d’information.

En décentralisant la gestion des données, les équipes métiers gagnent en autonomie en leur permettant d’accéder, de transformer et de partager des données sans dépendre d’un département IT centralisé. Cette indépendance accélère les projets Data et favorise une réactivité accrue aux besoins métiers par nature évolutifs.

Le Data Mesh contribue en effet à la réduction des délais de mise en production. En décentralisant la propriété des données et en permettant aux équipes de travailler de façon plus indépendante, les organisations peuvent répondre plus rapidement aux attentes métiers et proposer de nouveaux produits et services plus rapidement sur le marché.

De plus, la décentralisation réduit les goulots d’étranglement en allégeant la charge des équipes IT « centrales », ce qui améliore l’efficacité opérationnelle. La gouvernance flexible du Data Mesh, avec des standards définis globalement mais appliqués localement, permet une adaptation aux spécificités de chaque domaine, assurant ainsi une cohérence tout en respectant les particularités locales.

Cette approche favorise également une amélioration de la qualité des données, car chaque domaine fonctionnel est le plus à même de comprendre et de garantir l’intégrité de ses propres données, ce qui conduit à une meilleure satisfaction des utilisateurs.

Enfin, cette architecture s’intègre particulièrement bien dans des environnements distribués ou hybrides, tels que le multi-cloud, optimisant ainsi la scalabilité et la flexibilité des systèmes d’information.

Les défis à relever pour mettre en œuvre un Data Mesh

La mise en œuvre du Data Mesh présente plusieurs défis majeurs.

Tout d’abord, la formation des équipes métiers est essentielle pour qu’elles comprennent et assument leurs responsabilités en matière de gouvernance et de sécurité des données. Cette transition nécessite un changement culturel significatif, car les équipes doivent apprendre à travailler de manière autonome tout en collaborant efficacement.

Ensuite, l’intéropérabilité et la nécessaire standardisation peuvent poser des problématiques IT. Dans une architecture Data Mesh, les données sont gérées de manière décentralisée par différents domaines fonctionnels, ce qui peut entraîner des divergences dans les formats, les structures et les protocoles de communication des données, rendant leur intégration plus complexe que prévu. Pour assurer une interopérabilité efficace, il est essentiel de définir des standards communs et des interfaces claires permettant aux différents domaines de partager et de consommer les données de manière cohérente. Cela nécessite la mise en place de contrats de données explicites et l’utilisation de technologies facilitant l’échange de données entre systèmes hétérogènes.

De plus, la diversité des pratiques et des outils utilisés par les différentes équipes peut conduire à une hétérogénéité des données, compliquant leur utilisation transversale. La standardisation vise à harmoniser les formats, les nomenclatures et les métadonnées pour garantir une compréhension et une utilisation uniformes des données à travers l’organisation. Cela implique l’élaboration de conventions de nommage, la définition de schémas de données communs et l’adoption de protocoles standardisés pour la publication et la consommation des données.

Enfin, la complexité accrue de l’architecture décentralisée requiert une orchestration rigoureuse pour garantir la cohérence globale du système. Cela implique la mise en place de mécanismes de gouvernance fédérée et de plateformes de données en libre-service pour soutenir les équipes dans la gestion de leurs données en tant que produits.

Ces défis soulignent l’importance d’une planification stratégique et d’un engagement organisationnel fort lors de l’adoption du Data Mesh. S’entourer d’équipes expertes en ingénierie de la data, telles que celles de Smartpoint, est essentiel pour gérer efficacement à travers ces complexités et assurer une mise en œuvre réussie.

Les outils

L’adoption du Data Mesh nécessite la mise en place d’outils et de plateformes conçus pour faciliter sa mise en œuvre. Parmi les solutions leaders dans ce domaine, Smartpoint recommande :

  • Databricks : Cette plateforme unifiée offre des solutions pour l’ingestion, le traitement et l’analyse des données, simplifiant ainsi la gestion des pipelines de données dans une architecture Data Mesh.
  • Snowflake : En tant que plateforme de données cloud-native, Snowflake permet le stockage, le partage et l’analyse des données à grande échelle, favorisant une approche décentralisée de la gestion des données.
  • Nextdata : Fondée par Zhamak Dehghani, à l’origine du concept de Data Mesh en 2019, cette entreprise développe des solutions visant à faciliter l’adoption du Data Mesh en fournissant des outils adaptés aux besoins des organisations.
  • Denodo : Une solution de virtualisation des données qui facilite la mise en œuvre d’une architecture Data Mesh. En offrant une vue unifiée des données provenant de sources disparates, la plateforme Denodo permet un accès simplifié et une gestion efficace des données dans un environnement décentralisé. Cette approche est particulièrement adaptée aux architectures Data Mesh, où la gouvernance fédérée et la responsabilisation des équipes métiers sont essentielles.
  • AWS Lake Formation : Ce service d’Amazon Web Services simplifie la création de datalake sécurisés, permettant aux équipes de gérer et de partager leurs données de manière autonome.
  • Microsoft Azure Synapse Analytics : Cette plateforme analytique intégrée combine l’entreposage de données et l’analyse de big data, offrant une solution complète pour les architectures Data Mesh.

Ces outils, en facilitant la décentralisation et la gestion autonome des données, contribuent à l’essor du Data Mesh. À terme, cette architecture de données pourrait devenir un standard dans les environnements multi-cloud complexes, où l’agilité et l’autonomie sont essentielles pour répondre aux défis modernes de la gestion des données.

Pour relever les défis liés à la mise en œuvre du Data Mesh et en tirer pleinement parti, il est souvent nécessaire de faire appel aux services d’experts en architectures data et en ingénierie des données. Chez Smartpoint, nos équipes spécialisées vous accompagnent dans la conception et la mise en place de cette architecture innovante, en adaptant les solutions à vos besoins spécifiques. N’hésitez pas à nous contacter et modernisons ensemble votre architecture data.

LAISSEZ-NOUS UN MESSAGE

Les champs obligatoires sont indiqués avec *.

    Prénom*

    Nom*

    Société*

    E-mail*

    Téléphone*

    Objet*

    Message

    Quelles tendances data en cette fin d’année ? le TOP 3 selon Smartpoint, le spécialiste en ingénierie de la data.

    En cette fin d’année 2024, le paysage technologique continue d’évoluer à une vitesse fulgurante, porté par des avancées majeures dans l’intelligence artificielle, les architectures de données modulaires et la cybersécurité. Ces innovations transforment la manière dont les entreprises gèrent, exploitent et sécurisent leurs données. Smartpoint, expert en ingénierie de la data depuis sa création, vous présente les trois tendances clés à suivre pour rester à la pointe de ces évolutions.

    1) Développement assisté par l’IA

    Le développement logiciel connaît une transformation majeure avec l’intégration croissante de l’intelligence artificielle (IA). L’IA générative et le machine learning (ML) sont désormais utilisés pour assister les ingénieurs dans la création, le test et la livraison d’applications. Selon Gartner, d’ici 2028, 75 % des ingénieurs logiciels en entreprise utiliseront des assistants de codage IA, contre moins de 10 % en 2023. Cette tendance reflète l’énorme potentiel de l’IA pour automatiser des tâches complexes, améliorer la productivité, et réduire les erreurs dans les processus de développement​.

    Il en est de même dans l’écosystème Data !

    Citons pour exemple Snowflake qui exploite l’IA et le machine learning pour offrir une exploitation automatisée des données via des outils comme Snowpark, qui permet de développer et exécuter des modèles de machine learning directement dans le cloud. Les utilisateurs peuvent ingérer et analyser des données à grande échelle tout en intégrant des modèles prédictifs et génératifs pour des insights avancés​.

    Informatica, avec CLAIRE Engine, son moteur d’IA intégré dans Informatica Intelligent Data Management Cloud (IDMC), automatise l’ingestion et la gestion des données tout en utilisant des algorithmes de machine learning pour optimiser l’orchestration et la qualité des données. Cela permet de tirer parti de l’IA pour automatiser des processus complexes et accélérer l’exploration de données

    Enfin, connu pour sa plateforme Lakehouse, Databricks combine data lakes et data warehouses, et intègre des capacités avancées d’IA générative et de machine learning via MLflow. La plateforme permet de créer, entraîner et déployer des modèles d’IA directement sur les données, facilitant l’exploitation rapide et automatisée pour des analyses prédictives et des cas d’usage d’IA générative

    2) Architectures de données modulaires pour plus de flexibilité pour des besoins évolutifs

    Les architectures de données modulaires permettent une adaptabilité rapide aux changements des besoins métiers et technologiques. Ces architectures se composent de modules indépendants qui peuvent être développés, déployés, et mis à jour de manière autonome, offrant ainsi une flexibilité accrue. Un exemple courant est l’architecture microservices, où chaque service gère un aspect spécifique des données (comme la gestion des utilisateurs ou l’analyse des transactions), facilitant l’évolution et l’évolutivité de l’ensemble du système. Un autre exemple est l’architecture orientée événements (Event-Driven Architecture), utilisée dans des systèmes nécessitant une réponse en temps réel, où les composants modulaires réagissent aux événements au lieu de suivre un flux de données linéaire.

    Enfin, les plateformes dites Data Mesh décentralisent la gestion des données en permettant à chaque domaine de traiter ses propres données comme un produit. Ces approches modulaires répondent à des besoins croissants en termes de traitement distribué, de résilience, et d’optimisation des flux de données complexes​.

    Pour exemples, citons AWS Lambda et Google Cloud Functions qui utilisent des architectures orientées événements et microservices pour permettre aux développeurs de créer des applications réactives en temps réel. Chaque fonction Lambda ou Cloud Function peut être déclenchée par un événement spécifique (comme l’arrivée de nouvelles données ou une modification dans un système), permettant une gestion modulaire des processus métiers complexes.

    3) Cybersécurité et intégration dans la gestion des données

    En cette rentrée 2024, la protection des données et l’intégration efficace des systèmes sont plus que jamais aux cœur des préoccupations des entreprises. Les éditeurs de solutions Data intègrent de plus en plus l’IA et le machine learning pour renforcer la sécurité tout en facilitant l’exploitation des données. Par exemple, IBM Watsonx propose des outils de surveillance et d’analyse des données en temps réel, permettant de détecter et prévenir les cybermenaces, tout en assurant une intégration fluide avec les infrastructures existantes​.

    Fivetran quant à lui se concentre sur l’automatisation de l’ingestion des données tout en offrant des fonctionnalités avancées de cybersécurité. Cela permet une protection des données continue tout au long des processus d’intégration, tout en restant compétitif en termes de coûts et de simplicité de déploiement​.

    Citons également Elastic, avec sa solution Elastic Stack (ELK), qui se positionne comme un leader dans l’ingestion, le stockage et la restitution des données en temps réel. Elastic intègre des fonctionnalités avancées de machine learning pour détecter les anomalies dans les flux de données, renforcer la sécurité et offrir une visibilité complète des environnements IT. Cette approche proactive permet non seulement de protéger les données mais aussi d’améliorer l’intégration avec les systèmes existants.


    Vous souhaitez intégrer ces avancées technologiques au sein de vos systèmes d’information ou explorer les opportunités qu’elles peuvent offrir à votre organisation ? Faites appel à Smartpoint pour transformer vos défis en solutions concrètes et innovantes. Contactez-nous dès maintenant pour en savoir plus sur la manière dont nos experts peuvent vous accompagner dans cette démarche.


    Pour aller plus loin :

    LAISSEZ-NOUS UN MESSAGE

    Les champs obligatoires sont indiqués avec *.

      Prénom*

      Nom*

      Société*

      E-mail*

      Téléphone*

      Objet*

      Message

      IA et ingénierie de la Data, quelles avancées technologiques ?

      L’intelligence artificielle s’infuse désormais dans l’ingénierie des données, rendant les processus plus efficaces et précis. Si la GenAI n’est pas encore totalement adaptée aux besoins spécifiques de ce domaine, l’IA traditionnelle apporte des solutions concrètes pour automatiser les pipelines de données, améliorer la qualité, optimiser les bases de données, et faciliter l’extraction de données non structurées. Chez Smartpoint, nous avons intégré ces technologies pour transformer l’ingénierie des données, en mettant l’accent sur l’innovation et l’optimisation continue.

      Bien que l’IA générative fasse beaucoup couler d’encre et suscite beaucoup d’intérêt, elle n’a pas encore bouleversé l’ingénierie des données. Voici les principaux obstacles.

      Le Manque de précision dans les prédictions

      Les modèles génératifs comme GPT sont parfaits pour générer du texte ou du contenu multimédia, mais moins performants pour les tâches de prévision quantitative. Les approches classiques d’apprentissage supervisé ou les méthodes statistiques sont mieux adaptées pour la précision, notamment lorsqu’il s’agit de l’analyse de séries temporelles ou d’estimer les relations causales dans les données. En effet, les modèles génératifs sont conçus pour créer du contenu plausible à partir de motifs appris, sans véritable compréhension des relations statistiques sous-jacentes.

      Le défi d’interprétabilité

      Les modèles de GenAI fonctionnent souvent comme des « boîtes noires », où le processus de prise de décision n’est pas transparent. En ingénierie des données, il est primordial de comprendre les raisons derrière les décisions des modèles, notamment pour répondre aux exigences de conformité ou pour affiner les processus de gouvernance des données. À ce jour, les modèles génératifs manquent d’outils nécessaires pour fournir des explications claires sur les prédictions ou les recommandations.

      Les Limites dans le traitement des données structurées

      L’ingénierie des données repose largement sur la manipulation de données tabulaires et structurées, comme les données issues de bases de données relationnelles. Les modèles génératifs sont principalement optimisés pour le traitement de texte et d’images, et moins adaptés aux tâches analytiques sur des données tabulaires, qui nécessitent une approche différente.

      L’absence de support pour les tâches spécifiques de l’ingénierie de la donnée

      Les processus comme l’intégration de données, le nettoyage, l’enrichissement, et la gestion de pipelines de données exigent des compétences spécialisées que la GenAI ne possède pas encore. Les outils traditionnels de traitement de données offrent toujours à ce jour des solutions plus robustes pour ces tâches.

      Les problèmes de coût et de ressources

      Les modèles de GenAI nécessitent des ressources importantes, tant en puissance de calcul qu’en données pour l’entraînement. Pour des projets où les exigences en termes de précision ne sont pas très élevées, il est souvent plus économique d’utiliser des méthodes plus simples.

      Chez Smartpoint, nous avons pleinement intégré les avancées technologiques de l’IA dans notre stack data pour améliorer chaque étape du processus d’ingénierie des données.

      Les principaux domaines d’application incluent l’automatisation des pipelines, la gestion de la qualité des données, l’optimisation des bases de données, l’extraction des données non structurées, ainsi que l’analyse prédictive.

      Ces solutions AI-augmented permettent à Smartpoint d’exploiter le plein potentiel de l’IA pour automatiser les tâches manuelles, détecter les anomalies et anticiper les tendances, tout en s’assurant que la gestion des données reste conforme aux standards élevés de qualité.

      1. Automatisation des pipelines de données : L’IA peut automatiser des tâches comme le nettoyage, le mappage des schémas, et la transformation des données. Les éditeurs tels que Informatica et Talend proposent des solutions d’intégration et d’orchestration de données utilisant l’IA pour simplifier la gestion des flux de données.
      2. Qualité et gouvernance des données : Les outils basés sur l’IA détectent les anomalies et les incohérences dans les jeux de données pour améliorer leur qualité. Collibra, Alteryx, et Talend Data Quality offrent des solutions permettant de gérer la qualité et la gouvernance des données à grande échelle.
      3. Optimisation des performances des bases de données : Grâce à l’IA, les systèmes peuvent prédire les charges de travail et ajuster dynamiquement les ressources pour optimiser l’accès aux données. Les solutions comme Microsoft SQL Server, SAP HANA ou encore AWS Aurora utilisent l’IA pour automatiser l’optimisation des bases de données.
      4. Extraction et intégration de données : Le traitement du langage naturel (NLP) facilite l’extraction de données non structurées. Les outils tels que IBM Watson Discovery, Microsoft Azure Cognitive Services, et Google Cloud Natural Language aident à structurer les données extraites de documents. Alteryx Intègre l’IA pour automatiser la préparation des données, y compris le nettoyage et l’extraction d’informations. Snowflake facilite l’intégration de données non structurées et structurées grâce à ses capacités de traitement des données en temps réel. Il offre également une compatibilité étroite avec les outils d’IA et de machine learning, permettant aux entreprises d’exploiter les données directement dans l’entrepôt pour des analyses avancées. Sa plateforme facilite l’automatisation de la préparation des données et l’intégration avec des outils de NLP pour structurer les informations extraites.
      5. Analyse prédictive et prescriptive : Les modèles d’IA supervisés et non supervisés peuvent être utilisés pour anticiper les tendances et formuler des recommandations. Les plateformes d’analyse comme DataRobot, H2O.ai, et RapidMiner proposent des outils d’analyse prédictive qui s’intègrent facilement aux workflows existants.

      Ces outils spécialisés et enrichis à l’IA rendent le processus d’ingénierie des données plus efficace, tout en offrant de nouvelles perspectives pour optimiser la gestion et l’exploitation des données.


      L’IA joue déjà un rôle crucial dans l’ingénierie des données, améliorant l’efficacité, la qualité, et la gestion des processus. Si la GenAI n’a pas encore révolutionné ce domaine en raison de limitations techniques, les approches classiques et les outils AI-augmented continuent d’apporter des solutions concrètes. Chez Smartpoint, nous exploitons les avancées technologiques pour automatiser les tâches complexes et optimiser les performances. À mesure que les technologies d’IA évoluent, l’ingénierie des données bénéficiera d’applications toujours plus puissantes, ouvrant la voie à des innovations encore inexplorées.


      LAISSEZ-NOUS UN MESSAGE

      Les champs obligatoires sont indiqués avec *.

        Prénom*

        Nom*

        Société*

        E-mail*

        Téléphone*

        Objet*

        Message

        Choisir une architecture data modulaire ?

           1. Définition et principes d’architecture

        L’agilité la capacité à évoluer très rapidement – voir de « pivoter » – ne sont plus aujourd’hui l’apanage des startups. Toutes les entreprises doivent s’adapter, réagir et innover constamment pour exister sur leurs marchés. On évoque souvent la nécessite d’avoir un système d’information agile, l’architecture de données modulaire est son pendant.

        Ce modèle architectural, qui s’oppose à la rigidité des systèmes monolithiques traditionnels, est basé sur la conception de composants autonomes ou modules indépendants qui peuvent interagir entre eux à travers des interfaces prédéfinies. Chacun est dédié à une fonctionnalité data spécifique qui couvre un aspect de la chaine de valeur. Cette approche fragmente le système en sous-ensembles de tâches, ou de modules, qui peuvent être développés, testés et déployés de manière indépendante :

        • Collecte & ingestion des données, processus dynamique qui prend en charge divers formats, en temps réels ou en lots
        • Traitement et transformation, exécution d’opération comme le nettoyage, le redressement ou l’enrichissement des données, l’application de règles métiers, la conversion dans d’autres formats
        • Organisation et stockage selon les performances attendues, en data lake, en base de données opérationnelle, en data warhouse ou solution de stockage hybride
        • Analyse et restitution, pour le calcul de KPI, l’exécution de requêtes, l’utilisation de l’IA pour obtenir des insights, la génération de rapports, etc.
        • Sécurité et conformité, pour la gestion de l’authentification et des accès, le chiffrement (…) mais aussi la compliance auditable avec toutes les règlementations en vigueur dont RGPD

        Cette architecture modulaire offre aux entreprises la possibilité de mettre à jour, de remplacer ou de dé-commissionner des composants distincts sans impacter le reste du système Data. En d’autres termes, une architecture de données modulaire est semblable à un jeu de legos où l’on peut ajouter, retirer ou modifier des blocs selon les besoins, sans devoir reconstruire l’ensemble de la structure.

        La flexibilité en priorité

        La quantité de données générées et collectées par les entreprises a explosé littéralement et les volumes sont exponentiels, tout comme la variété des formats et la vitesse de traitement requise. Les systèmes d’information (SI) doivent plus que jamais être en capacités de s’adapter rapidement à ces nouvelles exigences. Hors le poids du legacy reste le frein numéro 1. Lors des chantiers de modernisation des SID (Système d’information décisionnel historiques) ; le choix d’une architecture modulaire est de plus en plus populaire et pour cause.

        Les architectures modulaires répondent à ce besoin impérieux de flexibilité sur des marchés très concurrencés, mondiaux et volatiles. C’est un choix qui permet une meilleure réactivité face à l’évolution très rapides des besoins métiers, des innovations technologiques ou des changements stratégiques. Ces architectures sont nativement conçues pour une intégration facile de nouvelles technologies, telles que le traitement en temps réel des données ou l’intelligence artificielle, tout en supportant les besoins croissants en matière de gouvernance et de sécurité des données.

        Cette flexibilité est également synonyme de viabilité à long terme pour les systèmes d’information, offrant ainsi aux entreprises un avantage concurrentiel durable. En résumé, l’architecture de données modulaire n’est pas seulement une solution pour aujourd’hui, mais une fondation solide pour l’avenir.


        2. Les avantages d’une architecture Data Modulaire

        Une architecture Data modulaire répond aux enjeux de notre ère basée sur la prolifération des données mais pas que ! C’est aussi une réponse alignée sur une stratégie d’entreprise pour qui la flexibilité et l’innovation continue sont des impératifs.

        2.1. Évolutivité et facilité de maintenance

        La maintenance et l’évolution des SI sont des gouffres financiers, fortement consommateurs de ressources et souvent un frein à l’innovation. Une architecture data modulaire facilite grandement la tâche ! Un composant peut être mis à jour ou remplacé sans risquer d’affecter l’intégralité du système, ce qui réduit significativement les temps d’arrêt et les coûts associés. L’évolutivité et l’innovation sont intrinsèques : ajout de nouvelles fonctionnalités, remplacement, montée en charge, intégration de nouvelles sources de données, (…).

        2.2. Agilité organisationnelle et adaptabilité

        Dans notre écosystème résolument numérique, l’agilité est primordiale. En isolant les différentes fonctions liée la gestion des données dans des modules autonomes, les architecture data modulaire s’adaptent aux demandes et aux besoins par nature évolutifs. Cette structure permet non seulement d’intégrer rapidement de nouvelles sources de données ou des technologies émergentes ; mais aussi de répondre efficacement aux exigences réglementaires spécifiques à la data.

        Exemples : Dans le cas des évolutions des normes de protection des données, le module dédié à la sécurité peut être mis à jour ou remplacé sans affecter les mécanismes de traitement ou d’analyse de données. De même, si une entreprise décide de tirer parti de nouvelles sources de données IoT pour améliorer ses services, elle peut développer ou intégrer un module d’ingestion de données spécifique sans perturber le fonctionnement des autres composants.

        Cette adaptabilité réduit considérablement la complexité et les délais associés à l’innovation et à la mise en conformité, ce qui est fondamental pour conserver une longueur d’avance dans des marchés data-driven où la capacité à exploiter rapidement et de manière sécurisée de grandes quantités de données est un avantage concurrentiel qui fait clairement la différence.

        2.3 Optimisation des investissements et des coûts dans la durée

        L’approche « pay-as-you-grow » des architectures data modulaires permet de lisser les dépenses en fonction de l’évolution des besoins, sans donc avoir à engager des investissements massifs et souvent risqués. Cette stratégie budgétaire adaptative est particulièrement pertinente pour les entreprises qui cherchent à maîtriser leurs dépenses tout en les alignant sur leur trajectoire de croissance.


        3. Architecture Modulaire vs. Monolithique

        En ingénierie de la data, on distingue les architectures modulaires des systèmes monolithiques en raison de l’impact direct que leur structure même a sur l’accessibilité, le traitement et l’analyse des données.

        3.1. Distinctions fondamentales

        Les monolithiques fonctionnent comme des blocs uniques où la collecte, le stockage, le traitement et l’analyse des données sont intégrés dans une structure compacte ce qui rend l’ensemble très rigide. Ainsi, une modification mineure peut nécessiter une refonte complète ou de vastes tests pour s’assurer qu’aucune autre partie du système ne connait de régression.

        Les architectures de données modulaires, quant à elles, séparent ces fonctions en composants distincts qui communiquent entre eux via des interfaces, permettant des mises à jour agiles et des modifications sans perturber l’ensemble du système.

        3.2. Maintenance & évolution

        Faire évoluer et maintenir un SID monolithique peut être très fastidieux car chaque modification peut impacter l’ensemble. En revanche, dans le cas d’une architecture de données modulaire, l’évolution se fait composant par composant. La maintenance est facilitée et surtout moins risquées.

        Exemple : Le changement ou l’évolution du module Data Visualisation ne perturbe en rien le module de traitement des données, et vice versa.

        3.3. Intégration des innovations technologiques

        L’ingénierie de la data est foisonnante de changements technologique, les architectures modulaires offrent une meilleure adaptabilité. Elles permettent d’intégrer rapidement de nouveaux outils ou technologies telles que l’Internet des Objets (IoT), les data cloud platforms, les solutions d’IA, de machine Learning ou encore d’analyse prédictive ; alors qu’un système monolithique nécessite une refonte significative pour intégrer de telles solutions. Elles permettent l’intégration de technologies avancées telles avec plus de facilité et moins de contraintes.

        Les architectures modulaires encouragent l’innovation grâce à leur flexibilité intrinsèque. Les équipes peuvent expérimenter, tester et déployer de nouvelles idées rapidement, contrairement au SID monolithique plus lourd et complexe à manipuler. Cette capacité d’adaptation est cruciale pour exploiter de nouvelles données, telles que les flux en temps réel ou les grands volumes de données non structurées.

        Exemple : l’introduction d’un module d’apprentissage automatique pour l’analyse prédictive peut se faire en parallèle du fonctionnement normal des opérations, sans perturbation.

        3.4. Évolutivité & performances

        Les architectures de données modulaires peuvent être optimisées de manière granulaire au niveau des charges pour dimensionner les performances au plus juste des besoins ; et ce sans impacter les autres fonctions du système. Dans un système monolithique, augmenter la performance implique souvent de redimensionner l’ensemble du système, ce qui est moins efficace et surtout plus coûteux.

        Contrairement aux systèmes monolithiques, où l’intégration de nouvelles technologies peut être un processus long et coûteux, les architectures modulaires sont conçues pour être évolutives et extensibles.


        4. Architecture modulaire vs. microservices

        4.1 différences entre une architecture data modulaire et une architecture microservices

        Les deux termes peuvent en effet porter à confusion car ces deux types d’architecture sont basés sur la décomposition en modules autonomes mais l’un est orienté services, l’autre composants. Leurs pratiques de développement et de mise en opérations sont bien distincts.

        Dans l’architecture data modulaire, chaque module représente une certaine capacité du système et peut être développé, testé, déployé et mis à jour indépendamment des autres.

        Les microservices, en revanche, sont un type spécifique d’architecture modulaire qui applique les principes de modularité aux services eux-mêmes. Un système basé sur des microservices est composé de petits services autonomes qui communiquent via des API. Chaque microservice est dédié à une seule fonctionnalité ou un seul domaine métier et peut être déployé, mis à jour, développé et mise à l’échelle indépendamment des autres services.

        4.2 Comment choisir entre architecture modulaire et microservices ?

        1. Taille et complexité du projet : Les microservices, par leur nature granulaire, peuvent introduire une complexité inutile dans la gestion des petits entrepôts de données ; ou pour des équipes d’analyse de données limitées. Ils sont surdimensionnés pour les petits projets. Une architecture modulaire, avec des composants bien définis pour la collecte, le traitement et l’analyse, suffit largement.
        2. Expertises des équipes data : Une architecture microservices nécessite des connaissances spécialisées sur l’ensemble de la chaine de création de valeur de la data, de la collecte à l’analyse, ce qui n’est pas forcément transposable sur des petites équipes ou composées de consultants spécialisés par type d’outils.
        3. Dépendance et intégration : L’architecture modulaire gère mieux les dépendances fortes et intégrées, tandis que les microservices exigent une décomposition fine et des interfaces claires entre les services. Les architectures modulaires se comportent donc mieux quand les données sont fortement interdépendantes et lorsque des modèles intégrés sont nécessaires. Les microservices, quant-à-eux, sont plus adaptés quand on cherche une séparation claire et des flux de données autonomes, permettant ainsi des mises à jour très ciblées sans affecter l’ensemble du pipeline de données.
        4. Performances et scalabilité : Les microservices peuvent être recommandés dans le cas de traitements à grande échelle qui nécessitent une scalabilité et des performances individualisées. En revanche, cela vient complexifier la gestion du réseau de données et la synchronisation entre les services.
        5. Maintenance des systèmes de données : Bien que ces deux types d’architectures soient par natures évolutifs, les microservices facilitent encore davantage la maintenance et les mises à jour en isolant les changements à des services de données spécifiques. Cela peut réduire les interruptions et les risques d’erreurs en chaîne lors des mises à jour dans des systèmes de données plus vastes.

        5. Cas d’usages et applications pratiques

        Une architecture de données modulaire, avec sa capacité à s’adapter et à évoluer, est particulièrement recommandée dans des cas où la flexibilité et la rapidité d’intégration de nouvelles technologies sont essentielles. Elle est devenu est must-have pour les entreprises qui cherchent à maximiser l’efficacité de leurs systèmes d’information décisionnels.

        • Télécoms : Dans ce secteur, où les volumes de données sont gigantesques et les besoins de traitement en temps réel sont critiques, l’architecture modulaire permet d’isoler les fonctions de traitement et d’analyse de flux de données, facilitant une analyse et une prise de décision rapides sans perturber les autres systèmes.
        • Secteur de la santé – Gestion des dossiers patients : Une architecture modulaire est particulièrement efficace pour gérer les dossiers de santé électroniques dans les hôpitaux. Des modules autonomes traitent les entrées en laboratoires d’analyse, les mises à jour des dossiers médicaux et les ordonnances, permettant des mises à jour régulières du module de gestion des prescriptions sans perturber l’accès aux dossiers historiques des patients.
        • Banque et finance – Analyse de la fraude : Un de nos clients utilise un module d’analyse de fraude en temps réel sur son système de gestion des transactions financières. Ce module s’adapte aux nouvelles menaces sans nécessiter de refonte du système transactionnel entier, ce qui renforce la sécurité et réduit les failles de vulnérabilité.
        • Plateformes de streaming vidéo : Ces services utilisent des architectures modulaires pour séparer le traitement des données de recommandation d’utilisateurs des systèmes de gestion de contenu, permettant ainsi d’améliorer l’expérience utilisateur en continu et sans interrompre le service de streaming principal.
        • Fournisseurs de services cloud : Ils tirent parti de modules dédiés à la gestion des ressources, à la facturation et à la surveillance en temps réel pour offrir des services évolutifs et fiables, enrichis en solutions d’IA notamment innovations pour l’analyse prédictive de la charge serveur.

        Études de cas sur les bénéfices des architectures modulaires vs. monolithiques :

        • E-commerce – Personnalisation de l’expérience client : Un de nos clients, plateforme de vente en ligne, a implémenté un module d’intelligence artificielle pour la recommandation de produits. Cette modularité a permis d’innover en incorporant l’apprentissage automatique sans avoir à reconstruire leur plateforme existante, augmentant ainsi les ventes croisées et additionnelles.
        • Smart Cities – Gestion du trafic : Une métropole a installé un système modulaire de gestion du trafic qui utilise des capteurs IoT pour adapter les signaux de circulation en temps réel. L’introduction de nouveaux modules pour intégrer des données de différentes sources se fait sans interruption du service, améliorant ainsi la fluidité du trafic et les prédictions.

        Avantages et inconvénients de l’architecture modulaire en ingénierie des données :

        Avantages

        • Agilité : Permet une intégration rapide de nouvelles sources de données, d’algorithmes d’analyse, etc.
        • Maintenabilité : Les mises à jour peuvent être opérées sur des modules spécifiques sans interruption de services.

        Inconvénients

        • Complexité de l’intégration : L’implémentation peut demander des charges supplémentaires pour assurer l’intégration entre les modules.
        • Gestion des dépendances : Une planification rigoureuse est nécessaire pour éviter les conflits entre modules interdépendants.

        5. Conception d’une Architecture de Données Modulaire

        En ingénierie data, la conception d’une architecture modulaire nécessite une segmentation du pipeline de données en modules distincts et indépendants, chacun est dédié à une tâche précise dans la chaîne de valeur des données.

        Les prérequis d’une architecture data modulaire :

        • Interopérabilité : Les modules doivent s’intégrer et communiquer entre eux facilement via des formats de données standardisés et des API bien définies. Cette étape est cruciale pour garantir la fluidité des échanges de données entre les étapes de collecte, d’ingestion, de traitement et d’analyse.
        • Gouvernance des données : Chaque module doit être conçu avec des mécanismes de gouvernance (governance by design) pour assurer l’intégrité, la qualité et la conformité des données à chaque étape :  gestion des métadonnées, contrôle des versions, audit, …
        • Sécurité : Vous devez intégrer un système de contrôle de sécurité adapté à la nature des données traitées dans chaque module. Par exemple, les modules de collecte de données ont besoin de sécurisation des données en transit, tandis que ceux impliqués dans le stockage se concentrent sur chiffrement des données froides.

        Les meilleures pratiques pour la conception de systèmes modulaires

        • Conception granulaire : Vous devez penser vos modules autour des fonctionnalités de données spécifiques attendues, en veillant à ce qu’ils soient suffisamment indépendants pour être mis à jour ou remplacés sans perturber le pipeline global.
        • Flexibilité et évolutivité : Vous devez concevoir des modules qui peuvent être facilement mis à l’échelle ou modifiés pour s’adapter à l’évolution des données, comme l’ajout de nouveau formats de données ou l’extension des capacités d’analyse sur des volumes étendus.
        • Cohérence et normalisation : Vous devez tendre vers des standards pour la conception des interfaces des modules et la structuration des données, ce qui simplifiera l’ajout et l’harmonisation de modules additionnels et l’adoption de nouvelles technologies dans le futur.

        6. Tendances Futures et Prédictions

        À l’heure où l’IA et l’apprentissage automatique redessine notre monde et nourrisse l’ingénierie de la Data, l’architecture de données modulaire vraisemblablement connaitre aussi des transformations majeures à court terme.

        • Intégration approfondie de l’IA : Les modules d’IA seront de plus en plus élaborés, capables d’effectuer non seulement des analyses de données, mais aussi de prendre des décisions autonomes sur la manière de les traiter et de les stocker. L’auto-optimisation des pipelines de données basée sur des modèles prédictifs pourra augmenter l’efficacité et réduire les coûts opérationnels. Ils pourront identifier des modèles complexes indétectables par des analyses traditionnelles.
        • Apprentissage automatique en tant que service : L’architecture de données modulaire incorporera surement des modules d’apprentissage automatique en tant que service (MLaaS), permettant une scalabilité et une personnalisation accrues. Ces services seront mis à jour régulièrement avec les derniers algorithmes sans redéploiement lourd du système. Ces modules incluront des composants capables d’auto-évaluation et de recalibrage pour s’adapter aux changements de données sans intervention humaine. Par exemple, un module pourra ajuster ses propres algorithmes de traitement de données en fonction de la variabilité des schémas de données entrantes.
        • Auto-réparation et évolutivité : Les modules seront conçus pour détecter et réparer leurs propres défaillances en temps réel, réduisant ainsi les temps d’arrêt. Avec l’apprentissage continu, ils anticiperont les problèmes avant qu’ils ne surviennent et adapteront leur capacité de traitement selon les besoins.
        • Interopérabilité avancée : Les futures architectures de données modulaires seront probablement conçues pour interagir sans effort avec une variété encore plus large de systèmes et de technologies, y compris des algorithmes d’IA très élaborés, des modèles de données évolutifs et des nouveaux standards d’interface.
        • Automatisation de la gouvernance des données : Les modules dédiés à la gouvernance utiliseront l’IA pour automatiser la conformité, la qualité des données et les politiques, rendant la gouvernance des données plus proactive et moins sujette à erreur.

        L’architecture de données modulaire va devenir plus dynamique, adaptative et intelligente, tirant parti de l’IA et de l’apprentissage automatique non seulement pour la gestion des données mais pour continuellement s’améliorer et innover dans le traitement et l’analyse des données.


        Une architecture de donnée modulaire, en bref.


        Une architecture de données modulaire offre aux entreprises une flexibilité sans précédent. Elle permet de gagner en agilité opérationnelle car elle a la capacité de se dimensionner et de s’ajuster aux changements qu’ils soient métiers ou technologique sans impact négatif sur le système existant. Cette approche par composants autonomes permet une meilleure gestion du pipeline de données et une évolutivité des systèmes inégalées. Les coûts et les interruptions liés à l’évolution technologique s’en trouvent drastiquement réduits. En outre, l’architecture modulaire est conçue pour intégrer facilement les dernières innovations comme l’intelligence artificielle et le machine learning. Des bases solides en sommes pour soutenir votre transformation digitale et votre croissance sur vos marchés.


        Quelques solutions pour vous accompagner dans cette transition technologique


        Databricks
        – Pour une plateforme unifiée, offrant une analyse de données et une IA avec une architecture de données modulaire au cœur de sa conception.

        Snowflake – Offre une architecture de données dans le cloud conçue nativement pour être flexible et l’évolute, permettant aux entreprises de s’adapter rapidement aux besoins et aux demandes changeantes des métiers et des marchés.

        GoogleCloudPlatform – Avec BigQuery, une solution puissante pour une gestion de données modulaire, permettant une analyse rapide et à grande échelle.

        BigQuery ou Snowflake ?

        Tous deux sont leaders en cloud data warehouses mais quelle plateforme choisir ?

        Ce n’est pas la même architecture, ni le même mode de facturation !

        Snowflake utilise des capacités séparées de stockage (basé sur des objets) et de calcul (basé sur un modèle d’entrepôt virtuel). Ainsi, il offre de grandes capacités en termes de scalabilité, d’élasticité et de performance. Il permet de palier aux problèmes de sur-dimensionnement en utilisant seulement (et en ne payant) que les ressources dont les utilisateurs ont besoin. La plateforme est très appréciée pour sa facilité de configuration et d’utilisation.
        Snowflake facture selon l’utilisation des capacités de stockage et la puissance de calcul nécessaire sur la base de crédit / heure.

        BigQuery est serverless et donc augmente automatiquement les ressources en fonction des besoins. Les utilisateurs n’ont plus à se préoccuper de la gestion de l’infrastructure. Sa promesse ? Simplicité et facilité d’utilisation. Le stockage est en colonnes, il est donc optimisé pour les charges analytiques avec des requêtes rapides sur de larges volumes (contrairement aux formats traditionnels).

        La couche de calcul est basée sur un modèle de « slots », les utilisateurs peuvent utiliser autant de requêtes qu’ils souhaitent, tant qu’ils ont les slots suffisants pour les lancer sur leurs volumes.
        BigQuery facture en fonction des capacités de stockage (actif et inactif), le volume de traitement de données et les insertions en streaming.

        A noter que BigQuery n’est disponible que sur Google Cloud … alors que Snowflake est agnostique, il est donc disponible sur toutes les principales plateformes AWS, Azure et GCP mais aussi opérant en cross-clouds.

        Vous vous demandez quelle est la plateforme Data Cloud la mieux adaptée à vos besoins et à vos usages spécifiques ? Nos consultants vous accompagnent dans vos choix, laissez-nous un message, nous vous rappelons sous 24 heures.