Smartday IA : IA générative, LLM et vectorisation – prenez le contrôle !

SMARTDAY IA – LES INSIGHTS

📍 Date & Lieu : 13 février 2025, George V – Paris

Entre nécessaires innovations, adaptation organisationnelle, conduite du changement, quête de retours sur investissement tangibles et anticipation des réglementations, cet événement a mis en lumière des leviers clés pour tirer parti de l’IA tout en garantissant une adoption responsable, éthique et souveraine

Remerciements

  • Guillaume Bizet, Head of Cloud Migration Factory & AI enthusiast, Société Générale
  • Aldrick Zappellini, Directeur Data & IA et Chief Data Officer, Groupe Crédit Agricole
  • Aurélien Barthe, Chief Data Officer, Direction Data et IA, MGEN
  • Anne Gradvohl, Head of Innovation, Groupe Vyv
  • Aurélie Vanheuverzwyn, Directrice exécutive – Data et Méthodes, Médiamétrie
  • Matthieu Gourvès, Directeur Practice IA, Smartpoint

TRANSFORMATION DES DONNÉES EN SAVOIRS ACTIONNABLES

L’IA est présentée comme un outil crucial pour transformer de grandes quantités de données en informations exploitables, ce qui est un enjeu majeur pour les entreprises. Il a été question également de stack technologique dont les LLM et les RAG, expliquant leur rôle dans le traitement et l’analyse des données.

IMPACT DE L’IA GÉNÉRATIVE

L’arrivée de l’IA générative a été décrite comme une “déflagration” qui a accéléré les processus d’adoption technologique. L’IA bouleverse les équilibres organisationnels, nécessitant une réévaluation des processus et une attention particulière à la souveraineté des données.

RÉORGANISATION ET ADAPTATION

Les entreprises ont dû s’adapter rapidement à l’IA générative, impliquant divers départements (RSSI, DPO, DSI, RH) pour aborder des sujets comme l’éthique, la sécurité et l’alignement stratégique. Cela a nécessité une collaboration interdisciplinaire pour gérer les impacts notamment sur les processus métiers.

STRATÉGIE D’ADOPTION MAÎTRISÉE

Une approche prudente et réfléchie est nécessaire pour intégrer l’IA, en s’assurant que l’adoption est maîtrisée et alignée avec les objectifs stratégiques de l’entreprise.

FORMATION ET CONDUITE DU CHANGEMENT

L’importance de la formation et de l’accompagnement des équipes est soulignée, notamment pour les managers et les différents métiers.

La conduite du changement est cruciale pour intégrer l’IA de manière efficace et pour gérer les impacts culturels et organisationnels. D’ailleurs, un intervenant a expliqué qu’une académie Data/IA a été créée pour développer les compétences avec déjà une première promotion. Il est à noter que des modules de formation adaptés aux différents niveaux et métiers sont en cours de développement.

DESIGN STRATÉGIQUE

Tout comme la formation à l’IA générative doit infuser dans les métiers, il est crucial de mettre l’utilisateur au cœur de chaque projet et de penser en termes de besoins plutôt que de solutions. Le design stratégique doit être intégré dans les directions offres et marketing et toutes les directions qui développent des offres, des services ; et pas seulement restée cantonnée dans les directions data ou digitales. C’est absolument nécessaire pour développer au sein des projets des expériences utilisateurs positives.

DIVERSITÉ ET SOUVERAINETÉ

L’événement a également abordé la nécessité de créer de la diversité dans l’écosystème technologique, souvent non européen, et de se concentrer sur la souveraineté des données, en particulier dans le contexte de la réindustrialisation. L’IA générative est en effet dominée par quelques acteurs majeurs, posant des enjeux de dépendance aux modèles propriétaires. Pour favoriser l’innovation européenne, des alternatives open-source et locales émergent, comme Deepseek (licence MIT), bien que les modèles réellement open-source restent limités aux Small Language Models (SLM).

ENVIRONNEMENT ET FRUGALITÉ

Les impacts environnementaux de l’IA, et en particulier de l’IA générative, sont également au cœur des préoccupations. Même s’il est impossible d’avoir des informations précises sur les coûts environnementaux d’entraînement et d’utilisation des LLM, des initiatives se développent : la mise en place de calculettes carbone, les démarches Green IT et FinOps pour superviser et optimiser les ressources, le Green Code pour minimiser l’impact environnemental dans les pratiques de développement, le choix d’instances cloud localisées dans des pays ayant un mix énergétique moins carboné. En effet, même au sein de l’UE, toutes les zones ne sont pas équivalentes en intensité carbone. La France dispose d’un mix énergétique de 5 à 10 fois moins carboné que l’Irlande ou l’Allemagne (source : Electricity Maps), mais AWS privilégie Francfort pour le déploiement initial de ses modèles, obligeant certaines entreprises à patienter pour une alternative moins carbonée.

RETOUR SUR INVESTISSEMENT DE L’IA (ROI)

Avant de déployer l’IA à grande échelle, il est essentiel de comprendre les besoins et de quantifier le retour sur investissement potentiel, bien que la littérature sur le sujet soit encore limitée.

L’importance du cadrage de projets liés à l’IA a été soulignée dans plusieurs interventions.

  1. Durée et approfondissement du cadrage : Il est mentionné que dans de grandes organisations – comme une banque – un cadrage efficace ne peut pas être réalisé en une semaine. Un cadrage approfondi peut prendre deux à trois mois, mais il est crucial pour bien comprendre et exprimer les attentes métiers. Cela permet de s’assurer que l’IA générative est réellement nécessaire et que le problème à résoudre est bien identifié.
  2. Introspection et questionnement : Il est important d’intégrer un questionnement vaste et profond dès le début du projet. Cela implique de ne pas se précipiter dans l’utilisation de l’IA sans avoir bien compris les besoins réels et les contraintes organisationnelles.
  3. Méthodologie et suivi : Le cadrage doit inclure une méthodologie claire pour évaluer la valeur des projets, en tenant compte des aspects qualitatifs et quantitatifs. Il est essentiel de vérifier après la mise en production si les estimations faites lors du cadrage se réalisent en termes de productivité ou de bénéfices.
  4. Accompagnement des Chefs de Projet : Les chefs de projet doivent être équipés et accompagnés tout au long des phases du projet, de l’identification du cas d’usage au suivi post-industrialisation. Cela inclut l’utilisation de méthodes et d’outils adaptés à l’impact du projet.
  5. Conduite du changement : La conduite du changement est particulièrement importante pour les projets d’IA générative, en raison de leurs impacts sur les outils, l’organisation, la culture et les compétences. Un bon cadrage doit prévoir ces aspects pour assurer le succès du projet.

IA ACT

Enfin, l’AI Act été mentionné dans le contexte de la préparation et de l’adaptation des entreprises aux exigences réglementaires liées à l’intelligence artificielle. Les intervenants ont échangé sur la manière dont leurs organisations anticipent les exigences de l’AI Act, en mettant en place des démarches et des structures internes avant même l’arrivée des textes réglementaires, comme la création de Design Authorities pour la data et l’IA. Il a été question de la transcription des exigences de l’AI Act, avec une réflexion sur la manière de les intégrer dans un cadre normatif interne. Les intervenants ont souligné l’importance de ne pas simplement se conformer aux exigences minimales, mais d’ajouter leur propre vision pour un cadre plus robuste. Un point a été soulevé concernant la gestion des risques, notamment les risques élevés, où l’AI Act ne fournit que peu de directives. Les organisations ont donc pris l’initiative d’aller au-delà des exigences minimales pour assurer une meilleure gestion des risques.

POUR CONCLURE

L’IA générative s’impose comme un levier de transformation majeur dans toutes les entreprises, mais son adoption doit être encadrée par une gouvernance stricte, une approche éthique et une optimisation des ressources. La clé du succès réside dans une intégration progressive, sécurisée et alignée avec les besoins métiers.