Cadres de sécurité des données : Protéger vos données à grande échelle

La sécurité des données est devenue une préoccupation centrale pour les entreprises de toutes tailles alors que les cybermenaces sont omniprésentes et que les pressions règlementaires sur la protection des données sont toujours plus fortes. Les architectures de données modernes collectent, stockent et traitent de vastes quantités de données sensibles, ce qui les rend particulièrement vulnérables aux attaques et aux fuites de données.

Les cadres de sécurité des données fournissent un ensemble de directives et de bonnes pratiques pour protéger les données contre les accès non autorisés, les utilisations abusives, les divulgations accidentelles ou le vol ce tout au long du cycle de vie de la donnée. En mettant en place un cadre de sécurité des données solide, les entreprises peuvent minimiser les risques de violation de données, s’assurer la confiance de leurs clients mais aussi protéger leur image de marque.

La sécurité des données suppose donc la mise en œuvre de politiques rigoureuses, des processus éprouvés mais aussi l’implémentation de technologies dédiées à la sécurisation des données.

Un cadre de sécurité efficace couvre donc différents volets comme la confidentialité, l’intégrité et la disponibilité.

Les principes fondamentaux

Ces principes, connus sous le nom de CIA (Confidentialité, Intégrité, Disponibilité), constituent le socle de toute stratégie de sécurité efficace.

La confidentialité garantit que les données sont uniquement accessibles aux personnes autorisées. Cela implique de mettre en place des contrôles d’accès stricts, tels que l’authentification et l’autorisation, pour empêcher les accès non autorisés. Le chiffrement des données est également essentiel pour protéger les informations sensibles lors de leur stockage ou de leur transmission.

L’intégrité garantit que les données ne sont ni modifiées ni altérées de manière non autorisée. Cela implique également de mettre en place des mécanismes de contrôle de la modification des données, tels que des sauvegardes et des journaux d’audit, pour suivre les modifications apportées aux données et permettre leur restauration en cas de corruption.

La disponibilité garantit que les données sont accessibles aux utilisateurs autorisés lorsqu’ils en ont besoin. Cela implique de mettre en place des infrastructures et des systèmes fiables, ainsi que des plans de reprise après sinistre pour garantir la continuité des opérations en cas de panne ou d’incident de sécurité.

Les bonnes pratiques pour la sécurité des données à grande échelle

L’approche défense en profondeur consiste à mettre en place plusieurs couches de sécurité qui se complètent et se renforcent mutuellement. Cela crée un environnement de sécurité plus robuste, rendant plus difficile pour les cybercriminels de pénétrer les systèmes et d’accéder aux données sensibles.

Exemples de couches de sécurité

  • Pare-feu : Barrières réseau pour bloquer les accès non autorisés.
  • Systèmes de détection et de prévention des intrusions (IDS/IPS) : Surveillance continue pour détecter et prévenir les attaques.
  • Chiffrement des données : Protection des données en transit et au repos pour les rendre illisibles sans les clés appropriées.
  • Contrôle d’accès : Politiques strictes d’authentification et d’autorisation.

Les stratégies de sécurité basées sur le risque impliquent d’identifier, d’analyser et de hiérarchiser les risques potentiels pour les données. Les ressources de sécurité peuvent ensuite être allouées en priorité pour atténuer les risques les plus critiques. Cette approche permet d’optimiser les efforts de sécurité et de maximiser la protection des données.

Étapes clés :

  1. Évaluation des risques : Identifier les actifs critiques et les vulnérabilités potentielles.
  2. Analyse des risques : Évaluer l’impact et la probabilité des menaces.
  3. Priorisation des risques : Hiérarchiser les risques en fonction de leur criticité.
  4. Atténuation des risques : Déployer des mesures de sécurité pour réduire les risques les plus élevés.

Les politiques de sécurité granulaires définissent des règles et des procédures spécifiques pour la gestion des données au sein de l’organisation. Ces politiques doivent être adaptées aux différents types de données, aux utilisateurs et aux systèmes. Elles doivent également être régulièrement mises à jour pour refléter les nouvelles menaces et les nouvelles technologies.

Composantes des politiques de sécurité :

  • Classification des données : Définir des niveaux de sensibilité pour les données et appliquer des mesures de protection appropriées.
  • Gestion des accès : Contrôler qui peut accéder aux données et à quelles fins.
  • Audit et surveillance : Enregistrer et examiner les accès aux données pour détecter les comportements anormaux.

La surveillance continue des systèmes et des réseaux est essentielle pour détecter les intrusions et les activités suspectes dès que possible. Une réponse rapide aux incidents de sécurité peut minimiser les dommages et limiter la propagation des cyberattaques.

Éléments de la surveillance continue :

  • Outils de surveillance : Utiliser des solutions comme Splunk, Datadog ou ELK Stack pour une surveillance en temps réel.
  • Alertes et notifications : Configurer des alertes pour les activités suspectes ou anormales.
  • Plans de réponse aux incidents : Développer et tester régulièrement des plans de réponse pour assurer une réaction rapide et coordonnée.

Assurer la conformité avec les réglementations est crucial pour éviter des sanctions et garantir la protection des données personnelles.

Principales régulations :

  • ISO/IEC 27001 : Norme internationale qui fournit une approche systématique de la gestion de la sécurité de l’information. Elle couvre tous les aspects de la sécurité des données, y compris les politiques, les processus, et les contrôles. (https://www.iso.org/standard/7498.html)
  • GDPR (General Data Protection Regulation) : Règlement général sur la protection des données de l’Union européenne, qui impose des exigences strictes pour la protection des données personnelles, y compris le droit à l’oubli, la portabilité des données, et la notification des violations. (https://gdpr-info.eu/)
  • Mais aussi PSD2 dans la banque, HIPAA dans la santé, etc.

Pour aller plus loin :


LAISSEZ-NOUS UN MESSAGE

Les champs obligatoires sont indiqués avec *.

    Prénom*

    Nom*

    Société*

    E-mail*

    Téléphone*

    Objet*

    Message

    Architecture data et governance-by-design

    La gouvernance et la conformité des données sont indispensables pour instaurer la confiance en votre architecture data.

    À l’heure du « tout data », la gouvernance des données s’impose comme un élément indispensable dès la conception architecturale. Loin de se limiter au big data historique, elle s’applique désormais à l’ensemble de la gestion des données. Intégrer la gouvernance des données dès le départ permet d’anticiper et d’atténuer les risques juridiques, financiers et de réputation liés à une approche réactive et non anticipée.

    L’impact chiffré d’une gouvernance défaillante
    Selon une étude récente de Gartner, 90% des projets Big Data échouent à cause de problèmes de gouvernance des données. De plus, les violations de données coûtent en moyenne 6 millions de dollars aux entreprises. Pire encore, un retard dans l’intégration de la gouvernance peut entraîner des coûts jusqu’à cinq fois supérieurs à ceux d’une implémentation initiale, sans compter les interruptions opérationnelles et les amendes faramineuses pouvant atteindre 20 millions d’euros pour non-conformité au RGPD. Les conséquences vont au-delà des pertes financières : une fuite de données peut « saper » 73% de la confiance des clients et ternir irrémédiablement l’image de l’entreprise, selon une étude de Salesforce.

    Alors que chaque octet est potentiellement sujet à examen et doit être justifiable, l’intégration des principes de confidentialité, d’éthique et de conformité réglementaire dès le départ est cruciale. La négligence de ces aspects dès l’étape de conception engendre inévitablement des failles structurelles et des vulnérabilités qui compromettent la sécurité et l’intégrité des données.

    Que ce soit au sein d’une architecture de data warehouse centralisée, d’un data lake ou d’un data mesh, la gouvernance des données doit être mise en œuvre de manière à garantir l’intégrité, la qualité, et la sécurité des données. Cela peut être réalisé à travers divers modèles organisationnels, allant de la gouvernance centralisée à la décentralisée, jusqu’à une méthode hybride.

    Plusieurs méthodologies existent pour mettre en œuvre la gouvernance des données :

    • Modèle de gouvernance centralisée : Un comité central définit les politiques et les procédures de gouvernance qui s’appliquent à l’ensemble de l’organisation.
    • Modèle de gouvernance décentralisée : La responsabilité de la gouvernance est déléguée aux différentes unités opérationnelles.
    • Modèle hybride : C’est la combinaison entre les deux approches précédentes.

    Enfin, une architecture de données conçue avec la gouvernance by design assure une bien meilleure qualité des données in fine, permettant un gain d’efficacité des analyses de 40% d’après Forrester. De même, une conformité transparente et une efficacité accrue permettent une réduction des coûts de gestion des données, estimée à 30% selon McKinsey. Intégrer la gouvernance dès la conception n’est pas seulement une question de conformité, mais une décision stratégique qui renforce la durabilité et la résilience de l’écosystème de données de l’entreprise.



    Les cadres réglementaires et les normes françaises et européennes incitent également à une intégration de la gouvernance dès la conception des architectures data.

    C’est le pilier incontournable de la protection des données en Europe, le RGPD impose aux entreprises de mettre en place des mesures strictes de gouvernance des données pour garantir la sécurité, la confidentialité et la protection des données personnelles des citoyens européens. L’intégration de la gouvernance dès la conception est essentielle pour respecter les principes du RGPD tels que la minimisation des données, la limitation du traitement et la responsabilisation.

    Adoptée en France en 2016, la LRN vise à renforcer la confiance dans le numérique et à promouvoir l’innovation. Elle encourage l’adoption de pratiques de gouvernance des données par les entreprises pour une meilleure gestion des données sensibles. Elle fournit un cadre réglementaire et des principes directeurs qui peuvent aider les organisations à mieux gérer leurs données et à tirer parti des avantages du numérique.

    Les normes ISO/IEC 27001 et ISO/IEC 27018 jouent un rôle crucial dans la mise en œuvre d’une gouvernance des données efficace dans les environnements cloud. En effet, ces normes fournissent un cadre complet pour la gestion des risques liés à la sécurité de l’information et à la protection des données personnelles dans le cloud computing. L’adoption de ces normes permet aux entreprises de mettre en place des pratiques de gouvernance des données rigoureuses et conformes aux meilleures pratiques.

    La tendance est à l’adoption de réglementations strictes en matière de gouvernance des données et c’est le cas également dans d’autres pays, comme aux États-Unis avec le California Consumer Privacy Act (CCPA) et le California Privacy Rights Act (CPRA). Ces réglementations imposent des exigences similaires à celles du RGPD, incitant les entreprises à repenser leur approche de la gouvernance des données dès la conception des architectures data.

    L’intégration de la gouvernance des données dès la conception n’est pas seulement une exigence réglementaire, mais c’est aussi une bonne pratique qui peut apporter de nombreux bénéfices aux entreprises. En adoptant une approche proactive de la gouvernance des données, les entreprises peuvent éviter les risques liés aux données, telles que les fuites de données et les violations de la vie privée.

    La gouvernance et la conformité des données ne sont pas simplement des obligations réglementaires ; elles constituent un engagement envers toutes les parties prenantes de l’entreprise. En établissant des fondations solides sur la qualité, l’intégrité des données, des politiques de sécurité solides ainsi que des rôles et des responsabilités clairement définis ; vous disposez d’une architecture de données fiable, sécurisée et pérenne, propice à la confiance mais surtout terreau d’une l’innovation durable.

    3.1 Qualité et intégrité des données

    Une gouvernance efficace vise avant tout à garantir l’exactitude, la cohérence et la fiabilité des données à travers toute l’entreprise. Cela inclut des processus rigoureux de validation, de nettoyage et de rapprochement des données, essentiels pour éliminer les erreurs et assurer une base de données fiable pour les décisions stratégiques. L’intégrité des données, étroitement liée à la qualité, concerne la justesse et à la complétude des données tout au long de leur cycle de vie. Pour ce faire, il est impératif de mettre en place des mécanismes de contrôle d’accès, des protocoles de gestion des versions et des procédures d’audit pour tracer toutes modifications ou accès aux données.

    Quelles solutions ? Chez Smartpoint nous utilisons plusieurs outils tels que :

    • Informatica, une plateforme complète de gestion des données qui permet aux entreprises de profiler, nettoyer, enrichir et analyser leurs données
    • Collibra, une plateforme centralisée pour la définition et l’application des règles de qualité des données. Elle permet notamment d’automatiser les tâches de gouvernance des données, telles que la validation et la surveillance des données
    • Talend Data Fabric, une plateforme de gestion des données open source qui intègre des fonctionnalités de qualité des données, d’intégration de données et de gestion des métadonnées.
    • Citons également SAS Data Quality, IBM Data Quality Fabric et SAP Data Quality Management parfait si être en environnement SAP

    3.2. Politiques et mécanismes de sécurité

    La protection des données est un élément essentiel de la gouvernance des données. Les entreprises doivent mettre en place des politiques et des procédures robustes pour protéger leurs données contre les accès non autorisés, les fuites de données et les autres cybermenaces. Ces politiques doivent couvrir tous les aspects du cycle de vie des données, de la collecte à la destruction. Cela implique d’utiliser des technologies telles que le chiffrement, la tokenisation et l’utilisation de solutions de gestion des identités et des accès (IAM). La surveillance continue et l’évaluation des risques sont également des aspects critiques des politiques de sécurité qui nécessitent également des outils monitoring temps réel pour détecter les comportements anormaux et les tentatives d’intrusion, ainsi que des procédures d’intervention rapide en cas d’incident.

    La définition claire des rôles et des responsabilités est essentielle pour une gouvernance des données efficace. Cela permet de garantir que tout le monde sait ce qu’il est censé faire et que les données sont gérées de manière cohérente et efficace. Cela permet d’éviter les doublons de travail, les conflits et les lacunes de responsabilité. Voici les rôles les plus fréquemment observés dans la cas d’une architecture data moderne :

    • Le responsable de la gouvernance des données (Data Governance Officer) est responsable de la stratégie globale de gouvernance des données de l’organisation. Il définit les politiques et les procédures de gouvernance des données, et veille à leur mise en œuvre.
    • Le responsable des données (Data Owner) est responsable de la qualité, de la sécurité et de l’intégrité d’un ensemble de données spécifique. Il travaille avec les autres acteurs impliqués dans le data set pour définir les exigences de gouvernance des données et pour s’assurer qu’elles sont respectées.
    • Le Data Steward est responsable de la gestion quotidienne d’un data set. Il assure la liaison entre le responsable des données et les utilisateurs des données, et veille à ce que les données soient utilisées de manière conforme aux politiques de gouvernance des données.
    • L’analyste des données (Data Analyst) utilise les données pour générer des informations et des insights. Il doit avoir une bonne compréhension des politiques de gouvernance des données et doit les respecter lors de l’utilisation des données.

    3.4. Zoom sur les particularités de la gouvernance des données dans le cloud

    La gouvernance des données dans le cloud est devenue un enjeu crucial pour nos clients qui s’appuient toujours davantage sur le cloud pour stocker et traiter leurs données. La complexité inhérente au cloud, la distribution des données et l’évolution constante des technologies rendent la gouvernance des données plus difficile que jamais.

    D’ailleurs, 66% des entreprises dénoncent le manque de visibilité sur leurs données et 73% déclarent avoir des difficultés à respecter les règlementations sur la protection des données dans le cloud.

    Sources : IDC 2022 et Gartner 2021

    Smartpoint se positionne en tant que partenaire stratégique pour transformer les défis du cloud en opportunités. La visibilité et le contrôle, fondamentaux pour la gouvernance des données, sont renforcés par des outils de monitoring avancés, et une maîtrise du FinOps, permettant une gestion optimisée des coûts du cloud. Smartpoint favorise l’adoption de pratiques de Cloud Security Posture Management (CSPM) pour garantir sécurité et conformité.

    L’expertise de Smartpoint en matière de gestion des risques diminue la dépendance des entreprises vis-à-vis des fournisseurs de cloud, proposant des solutions qui accroissent la résilience opérationnelle. Cette indépendance est également soutenue par la promotion de la portabilité des données, évitant ainsi l’écueil des environnements propriétaires.

    Dans les architectures data de dernière génération qui mobilisent tout un écosystème, la gestion des métadonnées est centrale. Elle permet une classification précise selon leur format, leur origine, leur structure, leur signification, etc. Les solutions de gestion de métadonnées permettent aux entreprises de cataloguer, organiser et gérer leurs métadonnées, facilitant ainsi la découverte, la compréhension et l’utilisation des données. Chez Smartpoint, nous utilisons notamment Informatica et Collibra.

    Selon Gartner, d’ici 2023, 70% des initiatives de gouvernance des données échoueront à cause d’une mauvaise gestion des métadonnées. Cela met en évidence l’importance cruciale d’adopter des solutions de gestion de métadonnées efficaces pour une gouvernance des données réussie.

    Source : Gartner 2023

    Les data catalogs sont également des outils indispensables. Ils servent de référentiels centralisés permettant une vue étendue sur les actifs de données disponibles à travers l’organisation et leurs accès.

    Les solutions de data lineage permettent quant à elle de cartographier le parcours des données à travers les systèmes et les applications métiers, depuis leur origine jusqu’à leur forme finale, mettant ainsi en lumières les différentes étapes successives de transformation. Cette traçabilité est indispensable pour comprendre l’impact des modifications et assurer ainsi la qualité de données

    L’utilisation de la blockchain est également prometteuse comme garant de la traçabilité et de l’intégrité des données. Elle permet de créer un registre immuable et infalsifiable qui vient renforcer la confiance dans la data et son utilisation. Cela permet de vérifier et de valider les échanges de données au sein des architectures complexes. Nous pouvons ici citer des solutions comme Hyperledger Fabric ou IBM Blockchain.

    En intégrant ces technologies et ces outils de gouvernance, Smartpoint s’attache à concevoir des architectures data robustes et évolutives, assurant ainsi une gouvernance data by design.

    Pour conclure

    En synthèse, nous pensons chez Smartpoint que les architectures de données de demain seront intrinsèquement conçues autour d’une gouvernance intégrée – un principe de « governance-by-design ». Cela implique une infrastructure où la gouvernance n’est pas une réflexion après coup mais bien la du système, assurant transparence, sécurité et conformité à chaque étape du cycle de vie des données.

    LAISSEZ-NOUS UN MESSAGE

    Les champs obligatoires sont indiqués avec *.

      Prénom*

      Nom*

      Société*

      E-mail*

      Téléphone*

      Objet*

      Message