Architecture Data Cloud Natives, faut-il franchir le pas ?

L’adoption des architectures data cloud natives connaît une croissance fulgurante, les organisations cherchant à tirer parti de l’évolutivité, de l’agilité et de la rentabilité du cloud pour leurs besoins en traitement et exploitation de données toujours plus volumineuses et disparates.

En quelques chiffres

  • Selon les prévisions d’IDC en 2023, le marché des logiciels de gestion de données cloud natives devrait atteindre 20,4 milliards de dollars d’ici 2026, avec un TCAC de 21,7 %.
  • Gartner prévoit que d’ici 2025, 80 % des architectures de données modernes seront cloud natives. Le cabinet souligne également la demande croissante d’entrepôts de données et de datalakes cloud natives.

1. Architectures data cloud native, de quoi parle t-on ?

Devenue une composante essentielle des systèmes d’information modernes, une architecture cloud native permet de concevoir des applications et des services optimisés pour tirer parti des technologies basées sur le cloud. Elle est construite sur des services managés qui permettent de s’affranchir de la nécessité (et de la complexité) de gérer et de maintenir l’infrastructure sous-jacente. Dynamiques, élastiques et évolutives, les solutions cloud native permettent de s’adapter rapidement et à la demande lors de tout changement. Les entreprises peuvent déployer et scaler leurs applications de manière plus rapide et sécurisée. Avec une meilleure gestion des ressources et une réduction des coûts opérationnels, elles facilitent également l’adoption rapide des dernières innovations technologiques. Les développeurs peuvent ainsi se concentrer sur la conception ou l’amélioration des applications plutôt que la gestion de l’infrastructure. De plus, elles encouragent l’automatisation et l’intégration continue/déploiement continu (CI/CD), les piliers garants de l’agilité !

Les architectures data cloud native (Cloud-Native Data Architectures) représentent une approche spécifique, conçue pour optimiser la gestion des données dans le cloud. Elles intègrent les principes des architectures natives en répondant aux défis spécifiques de la gestion des données à grande échelle.


  • Exploitation des services cloud : Les architectures cloud natives tirent parti des services cloud spécialisés pour chaque tâche spécifique : le stockage, le traitement, l’analyse et la gouvernance. Cela permet de gagner en flexibilité, en évolutivité et de profiter de tarifs particulièrement compétitifs inhérents au cloud computing.
  • Microservices et conteneurs : Les données sont traitées et analysées par des microservices modulaires et indépendants, souvent déployés dans des conteneurs. Cette approche renforce l’agilité, la scalabilité et la résilience des systèmes Data.
  • Architecture lakehouse : Beaucoup adoptent ce modèle qui combine stockage de données brutes et couches de traitement structuré. Cela permet plus de flexibilité analytique et la prise en charge de différents types de données.
  • Gestion automatisée des données : L’automatisation des tâches telles que la collecte, l’intégration, le nettoyage, la transformation et la sécurisation des données réduit la dépendance aux interventions manuelles – souvent sources d’erreurs et consommatrices de ressources – tout en améliorant l’efficacité du système.
  • Streaming et analyse en temps réel : Les architectures Data cloud natives prennent en charge le traitement en continu et l’analyse des données en temps réel, permettant une réactivité optimales suite aux événements et une prise de décision rapide.

2. Les principales architectures data cloud natives

Les architectures data cloud natives sont conçues pour optimiser la performance, la scalabilité et la sécurité des données dans des environnements cloud.

Un Lakehouse est une architecture hybride qui combine les avantages des datalakes et des datawarehouses. Cette architecture offre plus de flexibilité et d’évolutivité qu’un datalake tout en permettant la gestion structurée des données propre au datawarehouse.

  • Avantages : Permet une gestion et une analyse de données hétérogènes (structurées, semi-structurées et non structurées) avec des performances optimisées pour des requêtes complexes.
  • Utilisation : Idéale pour les organisations qui nécessitent une analyse approfondie des données avec une capacité de stockage en volume et une gestion flexible de différents types de données.
  • Exemple : Databricks Lakehouse propose une plateforme unifiée facilitant l’ingestion, le stockage, et l’analyse des données.

Le Data Mesh est une approche décentralisée qui gère les données en domaines distincts, comme des produits. Chacun est responsable de la production, de la consommation et de la qualité de son propre produit de données.

  • Avantages : Encourage l’innovation et l’agilité en attribuant la propriété des données aux équipes opérationnelles, favorisant ainsi une gestion et une qualité des données responsabilisée. Cette approche favorise la décentralisation, l’autonomie et l’agilité dans la gestion des données.
  • Utilisation : Efficace dans les grandes organisations où les données sont vastes et variées, nécessitant une gestion collaborative et décentralisée.
  • Exemples : AWS Data Mesh fournit des outils et des services pour orchestrer une architecture Data Mesh efficace. ThoughtSpot permet aux équipes de gérer et d’analyser leurs données de manière autonome tout en fournissant des insights accessibles à tous.

Cette architecture repose sur la décomposition des applications en services distincts plus petits, autonomes et modulaires, souvent gérés et déployés indépendamment. Chaque microservice gère une partie spécifique des données et expose ses fonctionnalités via des API.

  • Avantages : Améliore l’évolutivité horizontale indépendante pour chaque microservice, simplifie la scalabilité et accélère le développement de nouvelles fonctionnalités. C’est également plus de résilience aux pannes !
  • Utilisation : Adaptée aux entreprises qui développent des applications complexes nécessitant une évolutivité rapide et une maintenance simplifiée.
  • Exemple : Kubernetes permet d’orchestrer des conteneurs qui exécutent des microservices, chacun gérant une partie spécifique des données.

Une architecture Serverless repose sur l’exécution de fonctions sans gestion d’infrastructure. Les développeurs se concentrent sur le code et la logique métier, tandis que le fournisseur de cloud gère l’infrastructure sous-jacente.

  • Avantages : Réduction significative des coûts opérationnels et de la complexité de la gestion de l’infrastructure.
  • Utilisation : Idéale pour des applications nécessitant une exécution ponctuelle ou des traitements par lots à grande échelle.
  • Exemple : AWS Lambda permet de créer et d’exécuter des fonctions serverless sans gestion de serveurs.

Basée sur la réaction temps-réel aux événements, cette architecture facilite la communication asynchrone entre différents services et composants du système.

  • Avantages : Capacité de traitement de larges volumes de données en temps réel avec une latence minimale.
  • Utilisation : Idéale pour les scénarios nécessitant une prise de décision rapide basée sur des flux de données continus.
  • Exemple : Apache Kafka et Apache Flink pour orchestrer et traiter des flux de données en temps réel dans un écosystème distribué.

FeatureLakehouse ArchitectureData Mesh ArchitectureServerless ArchitectureEvent-Driven Architecture (EDA)Data-Oriented Microservices Architecture (DMSA)
FocusData storage, processing, and analysisDistributed data ownership and managementEvent-driven processing and executionAsynchronous communication and event managementMicroservices-based data management
Data StorageStructured, semi-structured, and unstructured data in a lakehouseDomain-oriented data productsNo centralized data storageEvent streams and data lakesData encapsulated within microservices
ProcessingBatch, stream, and interactive processingDomain-oriented data processing pipelinesServerless functions and containersEvent-driven processing pipelinesMicroservice-based data processing logic
Data GovernanceCentralized or decentralized governanceDomain-oriented data governanceNo centralized data governanceEvent-driven data governanceMicroservice-based data governance
ScalabilityHorizontal scalabilityDistributed scalabilityEvent-driven scalabilityEvent-driven scalabilityMicroservice-based scalability
FlexibilitySupports a wide range of data types and processing needsHighly flexible for distributed data managementAdaptable to event-driven workloadsHighly flexible for asynchronous communicationSupports independent development and deployment of data services
ComplexityCan be complex to manage and governRequires careful planning and coordinationCan be complex to manage and debugRequires careful event handling and error handlingRequires careful microservice design and orchestration
Use casesLarge-scale data warehousing, data lakes, and analyticsDistributed data management, self-service data access, and data democratizationEvent-driven applications, real-time data processing, and IoTMessaging, streaming applications, and real-time data processingDomain-driven data management, microservices-based applications, and API-driven data access

Chacune de ces architectures data cloud natives offre des avantages spécifiques adaptés à différents besoins et scénarios d’utilisation. Smartpoint vous recommande une évaluation approfondie des besoins métier spécifiques au préalable, avant de choisir l’architecture la plus appropriée, en considérant les aspects de performance, coût, sécurité et conformité réglementaire. Cette approche assure non seulement l’efficacité opérationnelle mais aussi la pérennité technologique de vos choix.

  • Agilité et rapidité : Développer, déployer et gérer des systèmes de données devient plus rapide et plus simple grâce à l’automatisation, aux conteneurs et aux services cloud.
  • Évolutivité et flexibilité : Les architectures Data natives peuvent s’adapter facilement à l’évolution des volumes de données et des besoins analytiques, en tirant parti de l’élasticité du cloud.
  • Résilience et haute disponibilité : Les systèmes de données cloud-natifs sont conçus pour être résistants aux pannes et aux défaillances, garantissant une continuité de service ininterrompue.
  • Coût optimisé : Les architectures Data natives permettent de réduire les coûts d’infrastructure et de maintenance en s’appuyant sur des modèles de paiement à la demande et des services cloud optimisés.

3 les points de vigilance avant d’adopter le data cloud natif

1. Complexité de la migration

Migrer les données vers une architecture cloud native est souvent un vrai défi, surtout pour les entreprises ayant des systèmes de données Legacy volumineux et complexes. La migration nécessite la plupart du temps une transformation et une ré-ingénierie complètes pour tirer pleinement parti des capacités du cloud, ce qui peut être coûteux et sujet à des risques comme la perte ou la corruption des données pendant la phase de transfert.

2. Les coûts !

Certes, les architectures data cloud natives offrent des économies d’échelle. Cependant, elles peuvent également entraîner des coûts imprévus, surtout si la politique de transfert de données n’est pas établie avant et que le stockage n’est pas optimisé. Le modèle de paiement à l’usage nécessite une gestion rigoureuse pour éviter les dépassements budgétaires … particulièrement lorsqu’il s’agit de grandes quantités de données.

3. Le Vendor lock-in

L’utilisation de services spécifiques à un fournisseur peut limiter la flexibilité et augmenter la dépendance envers ce fournisseur. Cela peut rendre la migration vers un autre fournisseur difficile et coûteuse en raison de l’implémentation spécifique des services et de l’architecture de données choisie.

4. La conformité réglementaire

La conformité avec les réglementations, comme le RGPD en Europe, est cruciale pour la gestion des données dans le cloud. Les entreprises doivent s’assurer que leurs architectures data cloud natives permettent une gestion, un stockage, et un traitement des données conformes aux lois sur la protection des données, ce qui peut être complexe en fonction de la distribution géographique des data centers des fournisseurs.

5. Sécurité des Données

Les architectures cloud natives posent de nouveaux défis en termes de sécurité des données. La dispersion des données dans différents services et la complexité des interactions entre microservices augmentent le risque d’exposition des données. Les pratiques de sécurité doivent être robustes, avec des mesures de cryptage, de gestion des accès, et de surveillance temps réel pour prévenir les violations de données.

6. Autres facteurs à prendre en considération

  • Complexité technique : La gestion de différentes technologies de stockage et de traitement de données (comme les datalakes, les entrepôts de données et les bases de données temps réel) dans le cloud peut devenir extrêmement complexe. C’est pour cette raison entre autres que nombreux sont nos clients qui externalisent « cette complexité » auprès de fournisseurs spécialisés en ingénierie et en architectures de données comme Smartpoint.
  • Gestion de la performance : Les performances peuvent être un enjeu, surtout lorsque les volumes de données sont énormes et que les besoins en traitement sont rapides. Les architectures doivent être conçues pour minimiser la latence et optimiser les performances de traitement.
  • Dépendance aux outils de gestion de données tiers : L’écosystème des outils de gestion de données cloud natives est vaste, et les entreprises peuvent devenir dépendantes de ces outils spécifiques, ce qui ajoute une couche supplémentaire de complexité et de coût.


Conclusion

L’adoption d’architectures data cloud natives a transformé la manière dont les organisations gèrent et analysent leurs données. En choisissant ce type d’architectures, les entreprises peuvent exploiter la puissance du cloud computing pour atteindre des niveaux d’agilité, d’évolutivité et de rentabilité sans précédent, tout en favorisant une prise de décision basée sur la data.

Les points clés à retenir

  • Les architectures data cloud natives offrent une approche moderne et adaptée pour concevoir et exploiter des systèmes de gestion de données dans le cloud.
  • Les avantages clés incluent l’agilité, l’évolutivité, la rentabilité, la gouvernance des données renforcée et la prise de décision basée sur les données.
  • Les types d’architectures data cloud natives courants incluent les architectures Lakehouse, Data Mesh et Serverless.
  • Le choix de l’architecture dépend des exigences spécifiques de l’organisation et des capacités des fournisseurs de cloud.

En conclusion, les architectures data cloud natives sont essentielles pour les organisations qui cherchent à tirer parti de la puissance du cloud pour gérer et analyser efficacement leurs données, alimentant ainsi la prise de décision stratégique et la croissance commerciale.

LAISSEZ-NOUS UN MESSAGE

Les champs obligatoires sont indiqués avec *.

    Prénom*

    Nom*

    Société*

    E-mail*

    Téléphone*

    Objet*

    Message