Quelles tendances data en cette fin d’année ? le TOP 3 selon Smartpoint, le spécialiste en ingénierie de la data.

En cette fin d’année 2024, le paysage technologique continue d’évoluer à une vitesse fulgurante, porté par des avancées majeures dans l’intelligence artificielle, les architectures de données modulaires et la cybersécurité. Ces innovations transforment la manière dont les entreprises gèrent, exploitent et sécurisent leurs données. Smartpoint, expert en ingénierie de la data depuis sa création, vous présente les trois tendances clés à suivre pour rester à la pointe de ces évolutions.

1) Développement assisté par l’IA

Le développement logiciel connaît une transformation majeure avec l’intégration croissante de l’intelligence artificielle (IA). L’IA générative et le machine learning (ML) sont désormais utilisés pour assister les ingénieurs dans la création, le test et la livraison d’applications. Selon Gartner, d’ici 2028, 75 % des ingénieurs logiciels en entreprise utiliseront des assistants de codage IA, contre moins de 10 % en 2023. Cette tendance reflète l’énorme potentiel de l’IA pour automatiser des tâches complexes, améliorer la productivité, et réduire les erreurs dans les processus de développement​.

Il en est de même dans l’écosystème Data !

Citons pour exemple Snowflake qui exploite l’IA et le machine learning pour offrir une exploitation automatisée des données via des outils comme Snowpark, qui permet de développer et exécuter des modèles de machine learning directement dans le cloud. Les utilisateurs peuvent ingérer et analyser des données à grande échelle tout en intégrant des modèles prédictifs et génératifs pour des insights avancés​.

Informatica, avec CLAIRE Engine, son moteur d’IA intégré dans Informatica Intelligent Data Management Cloud (IDMC), automatise l’ingestion et la gestion des données tout en utilisant des algorithmes de machine learning pour optimiser l’orchestration et la qualité des données. Cela permet de tirer parti de l’IA pour automatiser des processus complexes et accélérer l’exploration de données

Enfin, connu pour sa plateforme Lakehouse, Databricks combine data lakes et data warehouses, et intègre des capacités avancées d’IA générative et de machine learning via MLflow. La plateforme permet de créer, entraîner et déployer des modèles d’IA directement sur les données, facilitant l’exploitation rapide et automatisée pour des analyses prédictives et des cas d’usage d’IA générative

2) Architectures de données modulaires pour plus de flexibilité pour des besoins évolutifs

Les architectures de données modulaires permettent une adaptabilité rapide aux changements des besoins métiers et technologiques. Ces architectures se composent de modules indépendants qui peuvent être développés, déployés, et mis à jour de manière autonome, offrant ainsi une flexibilité accrue. Un exemple courant est l’architecture microservices, où chaque service gère un aspect spécifique des données (comme la gestion des utilisateurs ou l’analyse des transactions), facilitant l’évolution et l’évolutivité de l’ensemble du système. Un autre exemple est l’architecture orientée événements (Event-Driven Architecture), utilisée dans des systèmes nécessitant une réponse en temps réel, où les composants modulaires réagissent aux événements au lieu de suivre un flux de données linéaire.

Enfin, les plateformes dites Data Mesh décentralisent la gestion des données en permettant à chaque domaine de traiter ses propres données comme un produit. Ces approches modulaires répondent à des besoins croissants en termes de traitement distribué, de résilience, et d’optimisation des flux de données complexes​.

Pour exemples, citons AWS Lambda et Google Cloud Functions qui utilisent des architectures orientées événements et microservices pour permettre aux développeurs de créer des applications réactives en temps réel. Chaque fonction Lambda ou Cloud Function peut être déclenchée par un événement spécifique (comme l’arrivée de nouvelles données ou une modification dans un système), permettant une gestion modulaire des processus métiers complexes.

3) Cybersécurité et intégration dans la gestion des données

En cette rentrée 2024, la protection des données et l’intégration efficace des systèmes sont plus que jamais aux cœur des préoccupations des entreprises. Les éditeurs de solutions Data intègrent de plus en plus l’IA et le machine learning pour renforcer la sécurité tout en facilitant l’exploitation des données. Par exemple, IBM Watsonx propose des outils de surveillance et d’analyse des données en temps réel, permettant de détecter et prévenir les cybermenaces, tout en assurant une intégration fluide avec les infrastructures existantes​.

Fivetran quant à lui se concentre sur l’automatisation de l’ingestion des données tout en offrant des fonctionnalités avancées de cybersécurité. Cela permet une protection des données continue tout au long des processus d’intégration, tout en restant compétitif en termes de coûts et de simplicité de déploiement​.

Citons également Elastic, avec sa solution Elastic Stack (ELK), qui se positionne comme un leader dans l’ingestion, le stockage et la restitution des données en temps réel. Elastic intègre des fonctionnalités avancées de machine learning pour détecter les anomalies dans les flux de données, renforcer la sécurité et offrir une visibilité complète des environnements IT. Cette approche proactive permet non seulement de protéger les données mais aussi d’améliorer l’intégration avec les systèmes existants.


Vous souhaitez intégrer ces avancées technologiques au sein de vos systèmes d’information ou explorer les opportunités qu’elles peuvent offrir à votre organisation ? Faites appel à Smartpoint pour transformer vos défis en solutions concrètes et innovantes. Contactez-nous dès maintenant pour en savoir plus sur la manière dont nos experts peuvent vous accompagner dans cette démarche.


Pour aller plus loin :

LAISSEZ-NOUS UN MESSAGE

Les champs obligatoires sont indiqués avec *.

    Prénom*

    Nom*

    Société*

    E-mail*

    Téléphone*

    Objet*

    Message

    Architecture Data,  micro-services ou monolithique ? Un choix déterminant pour votre infrastructure d’entreprise.

    Alors qu’il existe une multitude d’outils et de solutions data qui s’offrent à vous ; vous devez vous interroger sur votre architecture Data – et sa roadmap – car c’est elle qui doit influencer votre stack technologique. Il ne s’agit pas tant de choisir entre architecture monolithique et architecture micro-services que de s’interroger sur la pertinence de votre stratégie data dont l’objectif est de soutenir votre business et vos capacités d’innovations dans la durée. Votre « vision data » va se traduire par une décision architecturale qui définit la manière dont votre entreprise gère et valorise ses données. Explications.

    Du on-premise au cloud, c’est aussi une évolution architecturale !

    Le paysage technologique des deux dernières décennies a connu une transformation radicale. Hier, les architectures de données étaient intrinsèquement en silos, chaque système fonctionnant en vase clos avec des degrés de compatibilité très limités. Les applications et les données étaient prisonnières d’infrastructures « on-premise » où l’intégration et l’interopérabilité étaient des défis majeurs (et des vrais centres de coûts) qui freinaient la collaboration et la pleine exploitation des données.

    Aujourd’hui, le paradigme a basculé vers le « cloud », où se mêlent des configurations hybrides et des solutions on premise toujours très présentes. L’adoption d’architectures en micro-services a radicalement changé l’approche de la conception et de la gestion des données. Cependant, avec cette nouvelle liberté vient la responsabilité de choisir judicieusement parmi un large éventail d’outils éditeurs et de services offerts par divers cloud service providers (CSP). Les micro-services offrent un catalogue de services indépendants, chacun excellant dans sa spécialité et communiquant avec les autres via des interfaces bien définies.

    Architectures Data, monolithique vs. micro-services

    C’est la configuration traditionnelle que l’on rencontre encore dans la plupart des entreprises. Toutes les fonctions sont regroupée en un seul et unique bloc logiciel. Imaginons par exemple, un énorme référentiel Airflow qui gère à la fois l’ingestion, la transformation des données et l’automatisation des processus métier, comme un guichet unique pour toutes les opérations data.

    Avec le cloud, les architectures data ont évolué vers un modèle de micro-services, où chaque service est autonome et spécialisé dans une fonction précise : gestion des données batch, transformation des données ou data warehousing. Citons pour exemples AWS Lambda, Apache Kafka, ou encore Snowflake choisis pour leur efficacité dans leurs domaines respectifs. Chaque service opère indépendamment, permettant une spécialisation et une adaptabilité qui étaient inimaginables dans les architectures en silos du passé.

    Quel choix d’outil pour quelle architecture ?

    Pour une architecture monolithique : Vous pouvez choisir des outils intégrés capables de gérer l’ensemble du cycle de vie des données au sein d’une même plateforme, tels que Talend ou Informatica. Les solutions comme Microsoft SQL Server Integration Services (SSIS) pour Azure peuvent convenir à ce type d’architecture en offrant un ensemble d’outils unifié.

    Pour une architecture microservices : Vous optez pour la spécialisation avec des outils dédiés pour chaque service. AWS Lambda pour l’exécution de code sans serveur, Apache Kafka pour le traitement des flux de données en temps réel, et Snowflake pour le data warehousing sont des exemples de cette diversification des outils. Ou encore Azure Functions pour des scénarios d’intégration événementielle, et Google BigQuery pour l’analyse en volume des données.

    Quels critères essentiels à prendre en compte dans votre choix d’architecture data ?

    1. Spécialisation vs. Intégration : L’architecture micro-services comprend la spécialisation (une fonction = un service), mais exige une intégration rigoureuse pour éviter la création de nouveaux silos.
    2. Infrastructure distribuée : Les micro-services optimisent l’efficacité et la scalabilité. AWS Lambda, par exemple, offre une solution de calcul sans serveur, tandis qu’un cluster Kubernetes est préférable pour des charges de travail plus lourdes et constantes. Azure et AWS offrent une variété de services qui s’alignent avec cette approche, comme Azure Event Hubs pour l’ingestion d’événements à grande échelle ou AWS Kinesis pour le streaming de données.
    3. Interopérabilité et gouvernance des données : L’interconnexion entre services est un enjeu majeur ! Les outils d’orchestration comme Apache Airflow peuvent aider … mais cela induit souvent des coûts supplémentaires et de la complexité. L’interopérabilité doit être intégrée dès la conception pour éviter des solutions de gouvernance onéreuses comme les catalogues de données ou des outils d’observabilité. Les services comme Azure Data Factory et AWS Glue facilitent l’orchestration de workflows data et l’intégration de services.
    4. Gestion des coûts : Les architectures microservices peuvent entraîner des coûts de transfert de données inattendus. Des outils comme Apache Kafka réduisent ces coûts en optimisant le traitement des données avant de les déplacer vers des solutions comme Snowflake. Les coûts de transfert et de stockage des données restent un point de vigilance. Les solutions comme Apache Kafka et les services de streaming de données peuvent minimiser ces coûts et optimiser le flux de données.

    Architecture Data en micro-services ou monolithique ?

    L’architecture choisie est essentielle car elle va déterminer l’efficacité de votre stratégie data. Dans un monde où les fournisseurs de cloud continuent d’innover et d’intégrer des services plus efficaces, les architectures modulaires en micro-services sont appelées à devenir encore plus interconnectées, performantes et économiques. L’avenir des données se dessine dans le cloud, où la complexité cède la place à la connectivité, à toujours plus d’agilité et à l’optimisation des coûts.


    Pour aller plus loin :