Agents autonomes, la V2 des chatbots et les solutions IA à suivre.


Les chatbots ont initié une première révolution dans l’automatisation des interactions client. Mais ils ont leur limite : des réponses souvent rigides, un manque de compréhension contextuelle et une incapacité à évoluer sans intervention humaine. Aujourd’hui, une nouvelle génération émerge : les agents autonomes. Infusés aux technologies avancées d’intelligence artificielle, ces agents vont au-delà des simples conversations préprogrammées. Ils comprennent des situations complexes, s’adaptent à divers contextes et prennent des décisions de manière indépendante pour exécuter des tâches de plus en plus complexes. Ils ne sont plus de simples exécutants, mais de véritables collaborateurs digitaux, capables de transformer les processus internes et l’expérience client.


Qu’est-ce qu’un agent autonome ?

Un agent autonome est une entité logicielle alimentée par l’intelligence artificielle, agissant de manière indépendante pour accomplir des tâches complexes. Contrairement aux chatbots traditionnels, les agents autonomes comprennent le contexte des interactions grâce à des technologies avancées comme le traitement du langage naturel (NLP) et l’intelligence artificielle générative. Ils analysent des données en temps réel, prennent des décisions adaptées et évoluent au fil des interactions grâce à des algorithmes d’apprentissage automatique. Par exemple, un agent autonome peut non seulement répondre à une demande client complexe, mais aussi analyser des données transactionnelles et déclencher des actions, telles que la révision d’un contrat ou la résolution proactive d’un problème technique.

Pourquoi les agents autonomes sont-ils la V2 des chatbots ?

Alors que les chatbots traditionnels reposent sur des règles simples et sont limités à des tâches prédéfinies, les agents autonomes révolutionnent les interactions car ils sont capables d’apprendre de leur environnement. Là où les chatbots se contentent de répondre à des questions standards, les agents autonomes gèrent des processus avec plusieurs étapes en tenant compte du contexte global de l’utilisateur. En combinant l’intelligence artificielle générative et des algorithmes de machine learning, ils offrent des interactions plus naturelles et personnalisées. De plus, ils prennent l’initiative en détectant des opportunités ou des problèmes avant même qu’un humain ne les identifie. Par exemple, alors qu’un chatbot bancaire répond simplement à des questions sur les horaires d’ouverture ou le solde du compte, un agent autonome analyse les habitudes financières du client pour lui proposer un produit adapté et automatiser les démarches nécessaires pour y souscrire.

Quels avantages apportent les agents autonomes ?

Les agents autonomes transforment profondément l’expérience client. Ils offrent des interactions fluides et sur-mesures, même pour des demandes complexes, tout en garantissant une disponibilité 24h/24 et 7j/7. Sur le plan opérationnel, ces agents permettent une automatisation des tâches répétitives mais également des processus métier complexes, réduisant ainsi les erreurs humaines et optimisant les ressources internes. Une autre force majeure réside dans leur capacité à prendre des décisions proactives. En analysant des données en temps réel, ils anticipent les besoins des utilisateurs et déclenchent des actions sans intervention humaine, augmentant ainsi l’efficacité et la satisfaction des clients. Selon Gartner, d’ici 2028, 33 % des applications logicielles d’entreprise intégreront des agents autonomes, permettant à 15 % des décisions quotidiennes d’être prises de manière autonome.

Quels défis accompagnent leur adoption ?

L’adoption des agents autonomes nécessite de relever plusieurs défis. D’un point de vue technologique, leur intégration repose sur des algorithmes d’intelligence artificielle avancés qui demandent des compétences techniques mais aussi fonctionnelles pour comprendre parfaitement les besoins métier. La cybersécurité est également un enjeu majeur, car ces systèmes manipulent souvent des données sensibles. Par ailleurs, il est essentiel de préparer les équipes internes à collaborer avec ces « nouveaux collègues digitaux », en intégrant ces agents dans les workflows existants et en formant les collaborateurs à exploiter pleinement leurs capacités. Enfin, ces agents se nourrissent de données, vous devez vous assurer de les alimenter avec des informations fiables sous risque que les décisions prises soient inadaptées et surtout hors contrôle. C’est tout le débat avec l’intelligence artificielle, vous devez établir des garde-fous !

Quelles perspectives pour les agents autonomes ?

Les agents autonomes représentent l’avenir des interactions numériques et ouvrent la voie à une autonomie encore plus grande. À l’avenir, ces outils pourraient gérer intégralement des projets ou des opérations complexes, sans intervention humaine. Leur intégration avec des modèles d’intelligence artificielle générative promet également des interactions encore plus contextuelles et naturelles. Ces avancées ne se limiteront pas à un secteur, les agents autonomes transformeront profondément les modèles actuels. Forrester identifie les agents autonomes comme une technologie émergente majeure pour 2025, avec un large panel de cas d’utilisation, allant des interactions avec les consommateurs aux opérations commerciales.

Quelles solutions technologiques pour concevoir des agents autonomes ?

Le développement d’agents autonomes repose sur un écosystème technologique qui mixe intelligence artificielle conversationnelle, traitement du langage naturel (NLP) et capacités décisionnelles avancées. Plusieurs solutions émergent comme des leaders dans ce domaine, offrant aux entreprises des outils robustes pour concevoir et intégrer ces nouveaux « collaborateurs digitaux ».

SoundHound AI et Amelia : des agents conversationnels avancés

SoundHound AI, reconnu pour son expertise en IA conversationnelle, a récemment acquis Amelia, une solution d’IA de pointe spécialisée dans les interactions complexes. Cette synergie permet aux entreprises de déployer des agents autonomes capables d’interpréter des requêtes complexes, de prendre des décisions en temps réel et de gérer des processus métier dans divers secteurs tels que la santé, la finance ou l’hôtellerie. Ces solutions combinent traitement du langage naturel (NLP) avancé et apprentissage automatique pour offrir une expérience client fluide tout en optimisant les processus internes.

DRUID : une plateforme agile pour l’IA conversationnelle

DRUID est une solution spécialisée dans la création d’agents conversationnels personnalisés et adaptables aux besoins de divers secteurs. Sa force réside dans sa capacité à intégrer des modèles de langage avancés et à collaborer avec des plateformes RPA comme UiPath pour gérer des flux de travail complexes. DRUID se distingue également par sa flexibilité, permettant aux entreprises de concevoir des agents sur mesure qui s’intègrent harmonieusement à leurs systèmes existants.

LangChain et Auto-GPT : frameworks open source pour agents autonomes

Des outils comme LangChain et Auto-GPT offrent des options pour concevoir des agents autonomes évolutifs. Ces frameworks open source permettent de développer des solutions flexibles, capables d’interagir avec divers outils et d’exécuter des tâches complexes grâce à une intégration avec des API et des données en temps réel. Ces outils sont particulièrement utiles pour les entreprises souhaitant expérimenter ou prototyper des agents autonomes avant un déploiement à grande échelle.

Microsoft Copilot Studio : création d’agents autonomes sur mesure

Microsoft a également lancé récemment des agents autonomes avec Copilot Studio, disponible en préversion publique. Cette fonctionnalité permet aux organisations de repenser leurs processus métier critiques grâce à l’IA, en s’appuyant sur le contexte de leurs données d’entreprise provenant de Microsoft 365 Graph, de systèmes de sauvegarde, de Dataverse et de Fabric.


Les agents autonomes ne se contentent pas de remplacer les chatbots traditionnels : ils réinventent totalement les interactions numériques en alliant compréhension contextuelle, prise de décision proactive et apprentissage continu. En s’appuyant sur des technologies avancées comme le NLP, le machine learning et l’intelligence artificielle générative, ces outils deviennent de véritables collaborateurs digitaux, capables de transformer aussi bien l’expérience client que les processus métier complexes.

Cependant, la mise en œuvre de ces agents ne s’improvise pas. Elle nécessite une compréhension fine des besoins métier, des compétences techniques pour intégrer les technologies choisies et une approche structurée pour garantir la fiabilité des données et la sécurité des systèmes. Pour les entreprises, cela représente un défi, mais surtout une opportunité majeure de se positionner comme des leaders dans leur secteur.

Chez Smartpoint, ESN pure player de la data, nous avons les compétences et l’expertise nécessaires pour vous accompagner dans cette transformation. Que ce soit pour expérimenter via un Proof of Concept (POC) ou pour déployer un projet d’agent autonome à l’échelle de votre entreprise, nous mettons à votre disposition des experts en IA et data, ainsi qu’un savoir-faire éprouvé dans l’intégration de solutions innovantes.

Prenez contact avec nos équipes dès aujourd’hui pour découvrir comment les agents autonomes peuvent accélérer votre transformation digitale. Ensemble, lançons votre projet et donnez à votre entreprise un avantage compétitif décisif dans un monde piloté par l’intelligence artificielle.

Souces :

Vous vous interrogez sur quelle démarche adopter ? Quelle architecture ou quels outils choisir ? Vous avez besoin de compétences spécifiques sur vos projets ? Challengez-nous !

Les champs obligatoires sont indiqués avec *.

    Prénom*

    Nom*

    Société*

    E-mail*

    Téléphone*

    Objet*

    Message

    AI over RPA : l’automatisation intelligente pour des processus plus complexes

    L’automatisation des processus métier a longtemps reposé sur le Robotic Process Automation (RPA), une technologie qui a fait ses preuves pour les tâches répétitives et structurées. Cependant, le RPA traditionnel atteint rapidement ses limites dès que les processus impliquent des données non structurées ou nécessitent une prise de décision plus avancée. C’est là que l’IA entre en jeu, transformant le RPA en une solution d’automatisation intelligente, ou « AI over RPA ».

    Pourquoi AI over RPA ?

    L’intérêt de combiner l’IA avec le RPA n’est plus à prouver dans l’écosystème de l’automatisation. Une étude de Gartner prédit que d’ici 2024, 60 % des organisations qui ont mis en place des initiatives de RPA auront intégré des technologies d’IA pour les rendre plus performantes. En effet, alors que le RPA classique ne peut automatiser que des tâches basées sur des règles strictes, l’ajout de l’IA permet de traiter des processus complexes et de gérer des données non structurées. Selon une autre enquête menée par Deloitte, l’automatisation intelligente, combinant RPA et IA, pourrait permettre aux entreprises de réduire leurs coûts d’exploitation de 20 à 25 % dans les trois prochaines années.

    Une flexibilité accrue pour des données complexes

    Là où le RPA seul se limite à exécuter des tâches prédéfinies basées sur des règles, l’IA permet d’interpréter et d’analyser des données non structurées, comme des images, du texte ou même des vidéos. Par exemple, avec des technologies d’IA telles que le traitement du langage naturel (NLP) et la vision par ordinateur, le RPA devient capable de traiter des documents, d’extraire des informations utiles et de répondre à des requêtes avec une compréhension contextuelle. Cela représente un gain de temps considérable dans des secteurs comme la banque et l’assurance, où les documents complexes, tels que les formulaires et les réclamations, sont courants.

    Des décisions en temps réel et un apprentissage continu

    En intégrant des modèles d’apprentissage automatique, AI over RPA permet aux entreprises de prendre des décisions basées sur des analyses en temps réel. Par exemple, dans un contexte de service client, un chatbot piloté par AI over RPA peut analyser le profil d’un client et adapter ses réponses en fonction de l’historique des interactions. Cette capacité de personnalisation permet de fournir un service plus précis et de mieux satisfaire les attentes des clients.

    AI over RPA ne se contente pas d’exécuter les tâches, mais il apprend et s’améliore au fil du temps. Grâce aux données recueillies, les algorithmes de machine learning affinent leurs analyses et deviennent de plus en plus performants, offrant une automatisation de plus en plus intelligente. Selon une étude d’IDC, les entreprises ayant adopté AI over RPA ont pu augmenter leur productivité de 32 % en moyenne grâce à l’automatisation adaptative et intelligente.

    Les bénéfices pour les entreprises

    Pour les entreprises, cette approche hybride apporte plusieurs avantages stratégiques :

    • Flexibilité accrue : Là où le RPA classique nécessitait une reconfiguration manuelle pour chaque changement de processus, AI over RPA s’adapte automatiquement aux nouveaux types de données et aux exigences en évolution.
    • Réduction des coûts et des erreurs : L’automatisation intelligente réduit non seulement les coûts en optimisant les ressources, mais elle diminue aussi les risques d’erreurs humaines dans les processus critiques.
    • Amélioration de l’expérience client : Avec l’IA, le RPA peut fournir des réponses plus pertinentes et personnalisées, améliorant ainsi l’engagement et la satisfaction client. Selon Forrester, les entreprises qui investissent dans AI over RPA constatent une amélioration de 15 à 25 % de la satisfaction client en moyenne.

    Quels outils choisir pour l’implémentation d’AI over RPA ?

    Lorsqu’il s’agit de choisir des solutions d’AI over RPA, plusieurs acteurs dominent le marché avec des offres intégrant à la fois RPA et IA. Parmi les leaders, UiPath propose une plateforme robuste et évolutive avec des fonctionnalités d’automatisation intelligentes, notamment le traitement du langage naturel et l’analyse de documents. Elle permet aux entreprises de combiner facilement les robots RPA et les algorithmes d’IA, offrant une excellente flexibilité pour automatiser des processus complexes.

    Automation Anywhere est une autre solution de premier plan, particulièrement appréciée pour son architecture cloud-native et ses fonctionnalités d’apprentissage automatique intégrées. Cette plateforme fournit des outils spécifiques pour traiter les données non structurées, tout en simplifiant l’analyse des workflows et la prise de décision en temps réel.

    SS&C Blue Prism, initialement positionnée sur le RPA classique, a évolué pour intégrer l’intelligence artificielle et le machine learning dans son offre. Sa plateforme « Connected-RPA » permet de créer des chaînes de travail intelligentes et est particulièrement appréciée des grandes entreprises pour sa sécurité et sa scalabilité.

    En dehors ces solutions, d’autres acteurs ont également des outils intéressants. Microsoft Power Automate, par exemple, offre une intégration fluide avec l’écosystème Microsoft et se distingue par sa capacité à traiter des tâches d’automatisation intelligentes via Azure AI et ses modèles de machine learning. Pour les entreprises déjà engagées dans l’environnement Microsoft, Power Automate peut être une option intéressante en termes de coûts et de synergies.

    Enfin, IBM Watson Orchestrate est une solution qui gagne en popularité, notamment pour les projets nécessitant une IA avancée pour l’analyse de données non structurées. En s’appuyant sur l’écosystème IBM Watson, cette plateforme permet aux entreprises d’automatiser des processus complexes nécessitant des capacités analytiques poussées.

    L’avenir de l’automatisation passe par AI over RPA !

    AI over RPA représente l’avenir de l’automatisation intelligente en entreprise. Il permet non seulement de surmonter les limites du RPA traditionnel, mais aussi de fournir une solution agile, évolutive et capable de répondre aux besoins des organisations modernes. Dans un monde où la gestion des données et l’efficacité opérationnelle sont des priorités, AI over RPA s’impose comme un levier de compétitivité majeur pour les entreprises qui souhaitent rester à la pointe de l’innovation.

    Sources :

    1. Gartner – « 60% of Organizations Will Supplement RPA with AI Capabilities by 2024 »
    2. Deloitte – « Global RPA Survey: Unlocking the potential of automation »
    3. IDC – « The Impact of AI and Machine Learning on Business Productivity »
    4. Forrester – « How AI-Driven RPA Enhances Customer Experience »

    Quelles tendances data en cette fin d’année ? le TOP 3 selon Smartpoint, le spécialiste en ingénierie de la data.

    En cette fin d’année 2024, le paysage technologique continue d’évoluer à une vitesse fulgurante, porté par des avancées majeures dans l’intelligence artificielle, les architectures de données modulaires et la cybersécurité. Ces innovations transforment la manière dont les entreprises gèrent, exploitent et sécurisent leurs données. Smartpoint, expert en ingénierie de la data depuis sa création, vous présente les trois tendances clés à suivre pour rester à la pointe de ces évolutions.

    1) Développement assisté par l’IA

    Le développement logiciel connaît une transformation majeure avec l’intégration croissante de l’intelligence artificielle (IA). L’IA générative et le machine learning (ML) sont désormais utilisés pour assister les ingénieurs dans la création, le test et la livraison d’applications. Selon Gartner, d’ici 2028, 75 % des ingénieurs logiciels en entreprise utiliseront des assistants de codage IA, contre moins de 10 % en 2023. Cette tendance reflète l’énorme potentiel de l’IA pour automatiser des tâches complexes, améliorer la productivité, et réduire les erreurs dans les processus de développement​.

    Il en est de même dans l’écosystème Data !

    Citons pour exemple Snowflake qui exploite l’IA et le machine learning pour offrir une exploitation automatisée des données via des outils comme Snowpark, qui permet de développer et exécuter des modèles de machine learning directement dans le cloud. Les utilisateurs peuvent ingérer et analyser des données à grande échelle tout en intégrant des modèles prédictifs et génératifs pour des insights avancés​.

    Informatica, avec CLAIRE Engine, son moteur d’IA intégré dans Informatica Intelligent Data Management Cloud (IDMC), automatise l’ingestion et la gestion des données tout en utilisant des algorithmes de machine learning pour optimiser l’orchestration et la qualité des données. Cela permet de tirer parti de l’IA pour automatiser des processus complexes et accélérer l’exploration de données

    Enfin, connu pour sa plateforme Lakehouse, Databricks combine data lakes et data warehouses, et intègre des capacités avancées d’IA générative et de machine learning via MLflow. La plateforme permet de créer, entraîner et déployer des modèles d’IA directement sur les données, facilitant l’exploitation rapide et automatisée pour des analyses prédictives et des cas d’usage d’IA générative

    2) Architectures de données modulaires pour plus de flexibilité pour des besoins évolutifs

    Les architectures de données modulaires permettent une adaptabilité rapide aux changements des besoins métiers et technologiques. Ces architectures se composent de modules indépendants qui peuvent être développés, déployés, et mis à jour de manière autonome, offrant ainsi une flexibilité accrue. Un exemple courant est l’architecture microservices, où chaque service gère un aspect spécifique des données (comme la gestion des utilisateurs ou l’analyse des transactions), facilitant l’évolution et l’évolutivité de l’ensemble du système. Un autre exemple est l’architecture orientée événements (Event-Driven Architecture), utilisée dans des systèmes nécessitant une réponse en temps réel, où les composants modulaires réagissent aux événements au lieu de suivre un flux de données linéaire.

    Enfin, les plateformes dites Data Mesh décentralisent la gestion des données en permettant à chaque domaine de traiter ses propres données comme un produit. Ces approches modulaires répondent à des besoins croissants en termes de traitement distribué, de résilience, et d’optimisation des flux de données complexes​.

    Pour exemples, citons AWS Lambda et Google Cloud Functions qui utilisent des architectures orientées événements et microservices pour permettre aux développeurs de créer des applications réactives en temps réel. Chaque fonction Lambda ou Cloud Function peut être déclenchée par un événement spécifique (comme l’arrivée de nouvelles données ou une modification dans un système), permettant une gestion modulaire des processus métiers complexes.

    3) Cybersécurité et intégration dans la gestion des données

    En cette rentrée 2024, la protection des données et l’intégration efficace des systèmes sont plus que jamais aux cœur des préoccupations des entreprises. Les éditeurs de solutions Data intègrent de plus en plus l’IA et le machine learning pour renforcer la sécurité tout en facilitant l’exploitation des données. Par exemple, IBM Watsonx propose des outils de surveillance et d’analyse des données en temps réel, permettant de détecter et prévenir les cybermenaces, tout en assurant une intégration fluide avec les infrastructures existantes​.

    Fivetran quant à lui se concentre sur l’automatisation de l’ingestion des données tout en offrant des fonctionnalités avancées de cybersécurité. Cela permet une protection des données continue tout au long des processus d’intégration, tout en restant compétitif en termes de coûts et de simplicité de déploiement​.

    Citons également Elastic, avec sa solution Elastic Stack (ELK), qui se positionne comme un leader dans l’ingestion, le stockage et la restitution des données en temps réel. Elastic intègre des fonctionnalités avancées de machine learning pour détecter les anomalies dans les flux de données, renforcer la sécurité et offrir une visibilité complète des environnements IT. Cette approche proactive permet non seulement de protéger les données mais aussi d’améliorer l’intégration avec les systèmes existants.


    Vous souhaitez intégrer ces avancées technologiques au sein de vos systèmes d’information ou explorer les opportunités qu’elles peuvent offrir à votre organisation ? Faites appel à Smartpoint pour transformer vos défis en solutions concrètes et innovantes. Contactez-nous dès maintenant pour en savoir plus sur la manière dont nos experts peuvent vous accompagner dans cette démarche.


    Pour aller plus loin :

    LAISSEZ-NOUS UN MESSAGE

    Les champs obligatoires sont indiqués avec *.

      Prénom*

      Nom*

      Société*

      E-mail*

      Téléphone*

      Objet*

      Message